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Abstract

We present a geometric construction of Backlund transformations and discretizations for a large
class of algebraic completely integrable systems. To be more precise, we construct families of
Béacklund transformations, which are naturally parameterized by the points on the spectral curve(s)
of the system. The key idea is that a point on the curve determines, through the Abel-Jacobi
map, a vector on its Jacobian which determines a translation on the corresponding level set of the
integrals (the generic level set of an algebraic completely integrable systems has a group structure).
Globalizing this construction we find (possibly multi-valued, as is very common for Bécklund
transformations) maps which preserve the integrals of the system, they map solutions to solutions and
they are symplectic maps (or, more generally, Poisson maps). We show that these have the spectrality
property, a property of Backlund transformations that was recently introduced. Moreover, we recover
Béacklund transformations and discretizations which have up to now been constructed by ad hoc
methods, and we find Backlund transformations and discretizations for other integrable systems.
We also introduce another approach, using pairs of normalizations of eigenvectors of Lax operators
and we explain how our two methods are related through the method of separation of variables.
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1. Introduction

The theory of integrable maps got a boost, if was not virtually (re)started, a decade
ago, when Veselov developed a theory of Lagrange correspondiee26] Roughly
speakingintegrable mapgalso calledntegrable Lagrange correspondengase symplec-
tic multi-valued mappings which have enough integrals of motion, this definition being
a proper analog of the classical Liouville integrability. In the main examples, studied by
him and later by others, the integrable maps that are constructed are time-discretizations
of some classical Liouville integrable systems (such as the Neumann system, the geodesic
flow on an ellipsoid, the Euler—-Manakov top, the Toda lattice, Calogero—Moser systems
and other integrable families), see, for instarj8e4,10-12,14,17,18]t follows that these
symplectic maps associate to a given solution of the integrable system a new solution, a
property reminiscent of Backlund transformations for soliton equations; thus, one speaks
in this context often of 8acklund transformatiofor the integrable system.

Recently{12] a new property o$pectralityof Backlund transformations was introduced.
Namely, it was observed that when one searches for the simplest Backlund transformations
of an integrable system, then one actually finds a one-dimensional fé&ily € C} of
them and, most importantly, that the variablevhich is essentially the conjugatéo A
is bound tox by the equation of an algebraic curve (dependent on the integrals), which is
precisely the curve that appears in the linearization (integration) of the integrable system.
The termspectralitystems from the fact that these curves arise most often as spectral curves,
e.g. when the vector fields of the integrable system are given by Lax equations.

The purpose of this paper is to present a systematic construction of Backlund transfor-
mations for a large class of integrable systems which includes most classical integrable
systems and many new ones. Some of the flavors of our methods and results are as follows:

1. Our Backlund transformationB, are given by explicit formulas rather than implicit
equations.

2. We find big families of maps: one can let the paramgteary from one level manifold
of the integrals to another.

3. They are symplectic (or Poisson) with respect to several compatible symplectic (or
Poisson) structures.

4. Although our maps are-valued (two-valued in the examples), they lead to single-valued
maps on any level manifold of the integrals.

5. The resulting multi-point maps will discretize a family of flows of the integrable system
(and not just a particular one).

6. The maps (and their iterates) are defined over an extensior{Jfiglgh) of Q, wherep
depends on the initial conditions (values of the integrals) only.

These properties imply that our Backlund transformations are very well suited as symplectic
integrators for the underlying integrable systems (46¢).

Our methods will be restricted to those integrable systems (defined @verhich
have “good” algebraic geometric properties. These systems, baptized algebraic completely

1 SinceB; is symplectic it is given by a canonical transformati&n which depends oh. The conjugate of
is given byd F; /9.
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integrable systems (a.c.i. systems) by Adler and van Moerbeké¢l(9deave algebraic in-
tegrals and Poisson structures, and the generic common level set of the integrals is an affine
part of a complex algebraic torual§elian variety on which the flow of the integrable vector
fields evolves linearly. A Backlund transformatid, as defined above, will leave each
such level set invariant. But it is well known that Abelian varieties are rigid in the sense
that a holomorphic map between Abelian varieties is a group automorphism, followed by
a translation. The automorphism group of an Abelian variety being fiBitegonsists of

a pure translation if it depends effectively arand is the identity map for some value of

A. If one wants to construct Backlund transformations, one may therefore be tempted to
prescribe for every level setgdimensional vectorg is the dimension of the level set)

but one is certainly doomed to fail when one wants to write down explicitly in algebraic
coordinates the map which results from a translation over this family of vectors.

When the Abelian varieties that appear in the a.c.i. system are Jacobians then there is a
special family of translations, given by pairs of points on the underlying algebraic curve
(the Jacobian of an algebraic curve of gegus a g-dimensional Abelian variety). Using
theexplicitcorrespondence between the points of phase space and the points on a Jacobian
(represented either as divisors or line bundles on the underlying curve) we write down the
meromorphic function on the curve that realizes the linear equivalence as follows:

D+P~D+0, @

whereP and Q are the two points on the curve and the divisBrandD are the two divi-
sors which correspond to a generic point on phase space and its image under the Backlund
transformation (this function is unique up to a constant factor). When expressed in terms
of the phase variables this provides us with the map that gives the desired translation over
the element P — Q] of the Jacobian. If one fixes one of the points, gayone recovers a
one-dimensional family of maps, indexed by a pdirin the curve. Notice that we can vary
the points from one Jacobian to the other; however, there is an unavoidable monodromy prob-
lem, which makes that the poinBsandQ may getinterchanged (leading to precisely the op-
posite vector, hence the inverse Backlund transformation), thus leading to a two-valued map.
For example, for theg-dimensional) Mumford system (s¢21]), phase space is the
affine space of all matrices

V(X w(x
o= (2 7).
whereu, v andw are polynomials inc with « andw monic and
degv(x) < degu(x) = degw(x) —1=g.
The family of maps that we construct are given by the similarity transformation
L) > M)LEM ) (2

with

. B x—)Lf—I—,BZ
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whereg = (uy —v(hs))/u(rr) and(r s, ur) is the chosen poin® (dependent orf) on
the spectral curve? = f(x) = —detL(x) and Q is the point at infinity of this curve. Itis
easy to see that these maps satisfy properties 1, 2, 4 and 6 above.

By direct computation we find, in each example, a large class of Poisson maps. In the
case of the Mumford system for example we show that wReraries such that its first
coordinate depends on the Casimirs of the Poisson structure only, then we get a Poisson
map, thereby establishing property 3.

When the level manifolds of the a.c.i. system are not Jacobians then they are, in all
known examples where the integrals are known explicitly, covers of Jacobians, and we get
Backlund transformations in an implicit form, i.e. we get Lagrangian correspondences as in
Veselov's original pap€j24]. SeeSection 3.5or an example. The same applies to g.a.c.i.
systems (a.c.i. in the generalized sense[2@eWhen the level manifolds are more general
Abelian algebraic groups (a.c.i. in the sense of Mumford) then they are extensions of Abelian
varieties by one or more copies @f and our technique again applies, sextions 3.2
and 3.3for examples.

Whenwe letDp — P thenwe find atthe first order a vector field which is constant on every
level manifold becaus® and P depend on the integrals only, so their restrictions to these
level manifolds are linear combinations of the integrable vector fields. They need not be
globally Hamiltonian, but we will present in our examples one-parameter families of points
(P, Q) which lead to precisely the integrable vector fields of the a.c.i. system (property 5).
In these cases the Backlund transformations should be considered as discretizations of the
integrable system. Since these Béacklund transformations commute, by construction, one
may think of these as defining a discrete analog of an a.c.i. system.

Below we will also present another, but related, technique to construct the maps
that represent translations on the level manifolds (assumed to be affine parts of Jaco-
bians) of the integrals. For this it is assumed that phase space is given by Lax oper-
ators. We choose two different normalizations of the eigenvectors of the Lax operator,
leading to two different separations of variables. This results in a map which is identical
to the one that we constructed before. The reason is that the two different normaliza-
tions, which lead to linearly equivalent divisors, are chosen such that each has a different
fixed point in the resulting divisor; if we call these poirftsand Q then we recover pre-
cisely the above linear equivalen¢), and hence leads to the same Béacklund transfor-
mation.

2. TheMumford system
2.1. Translations on hyperelliptic Jacobians

For a fixed integeg > 1 the phase spadd, of the (g-dimensional) Mumford system
(see[16]) is the affine spac#/, of Lax matricesL(x) of the form

<v(x) w(x) )
L(x) = ;
u(x) —vx)
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whereu(x), v(x) andw(x) are polynomials, subject to the following constraintét) and
w(x) are monic and their degrees are respectigeindg + 1; the degree of (x) is at most
g — 1. Writing

w(x) = x8 +uxd 14 4oy, v(x) = v 4 4w,

1
w(x) = x8* + wox? + -+ wy,

we can take the coefficients of these three polynomials as coordinalds.dn particular

we will sometimes denote points 8f, by triples(u(x), v(x), w(x)). Let us denote b,

the affine space of polynomialg € C[x] which are monic and have degreeWe will
usually viewPo, 1 (or, in the next sectior?,..») as the space of hyperelliptic curves with
equationy? = f(x); whenallroots off are distinctthen such a curve is smooth and its genus
is g. We denote such an affine curve By and denote its smooth compactification, which
is a compact Riemann surface, by. It is well known that every compact hyperelliptic
Riemann surface of genysis obtained in this way. The surjective mag M, — P2g41
defined by

X (L(x)) = —detL(x) = u(x)w(x) + v?(x) )

is the moment map of an algebraic completely integrable system (a.c.i. system). This means
inthe first place that there is a Poisson struc?toreMg with respect to which *(O(P2g+1))
is involutive (commutative for the Poisson bracket). Secondly, it means that the tangent space
to a generic fibely ~1(f) of x is spanned by the Hamiltonian vector fields associated to
this involutive algebra; by the first condition these vector fields commute. Third, a generic
fiber of x is an affine part of a commutative algebraic group; in the present case, when the
roots of f are distinct thery ~1( 1) is an affine part of a complex algebraic torus, namely it
is isomorphic to the Jacobian &f;, minus its theta divisor. Finally, it means that the flow
of the commuting Hamiltonian vector fields on each complex torus lifts to a linear flow on
its universal covering spades.

It is convenient for our constructions to introduce the universal c@yvef Py, 1.
Intuitively speakingC, is constructed out of,,.1 by replacing every point 0P, 1
by the curve which it represents. Explicitl§, can be represented as the affine variety

{(x,y, NIx,y €C, f € Pry1 and y2 = f(x)};

the natural projectioif, — P21 will be denoted byr. The partial compactification
of 7 : C, = Pag+1, Which is the quasi-projective variety obtained by compactifying the
fibers ofz, will be denoted ag, and we use the same notatisrfor the extension ofr
toC,.

The first useful observation that we make is that any sectiofin : C;, — Pagi1
leads to a family of transformations of phase space, where each transformation restricts to a
translation on every Jacobian of the system. This follows from the fact that there is a natural
sectionéw Of w : Cy — P2g11, Which is given byéso(f) = (coy, f), Whereoo s is the
unique point needed to compactify into I'y. Indeed, if¢ is a section ofr : I’y — Pog1

2 There are in fact in the present case many (compatible) Poisson structures which make the Mumford system
into an a.c.i. system, s¢&9] andSection 2.2
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then we get a commutative diagram

p2g+1
wherep is defined ap = £ o x and we geta map; : M, — M, by
L LR[p(L) — poo(L)], ()

wherep, = &5 o x. In this definition we use the fact that a generic pdirgk) of M,
(more precisely: each point of any fibgr1( f) for which I'y is smooth) admits a natural
interpretation as a holomorphic line bundleof degreeg over the Riemann surfacgy,
wheref = x(L(x)); thust € Pieg(l_‘f) = JaqIy). Also, [D] stands for the line bundle
associated to a divisdp. By construction, the restriction d; to a generic levek ~1(f)
of the moment mayy is a translation overk[( f) — & (f)]. On the one hand, this implies
that B is isospectral: it leaves the fibers gfinvariant. On the other hand, translations
in a commutative group obviously preserve translation invariant vector fields, Bnce
leaves invariant all those vector fields #f), which restrict to translation invariant vector
fields on a generic fiber of; in particular eaclB; leaves the integrable vector fields of the
Mumford system invariant. Notice that it is unavoidable for such translation maps to have
poles, because a non-zero translation moves the theta divisor, hence every fibsilof
have a divisor of points which are sent out of phase space.

Our second observation is that the m#@lgcan be effectively computed. Indeed, follow-
ing Mumford (who attributes this construction to Jacobi) the above mentioned interpretation
ofageneric elemert(x) € M, as aline bundl€ can be carried out explicitly as follows: to
the pointL (x) = (u(x), v(x), w(x)) € x ~1(f) we associate the divisdy = Zle(x,-, vi)
on Iy (hence the line bundl€ = [D] on ff, when f is supposed to have no multiple
roots) using the following simple prescription:

X1, ..., xg arethe zeros af(x), (6)
vi=v(x) fori=1,...,¢. @)

Assuming(u(x), v(x), w(x)) to be generic, we let (x) = B (L(x)) whichwe also write as
(U (x), v(x), w(x)) = Bg (u(x), v(x), w(x)).

Since(u(x), v(x), w(x)) is generic its image does indeed belongitp. We denote byD
the divisoerzl(x,», v;) given by (6) and (7) According to(5) the line bundle to which
[D] is mapped is obtained by tensoring wiih{ D] — o[ P]]. We define regular functions
randp onPye i1 by E(f) = (A(f), n(f), f); in order to simplify the notation we will
write Ay andu ¢ for A(f) andu(f). Then(6) and (7)associate t@ii(x), v(x), w(x)) the
line bundleZ = [ D] for which we have two different descriptions,

g g
[D] = |:Z(5Ei, )71‘)} = |:Z(Xi, yi)+ Oopopyp) — 00fj| :
i=1

i=1
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The second equality expresses thaf_, (i, 5i) + ooy andd>"%_ (xi, yi) + (uys, Ay) are
linearly equivalent. This means that there is a rational function (unique up to a non-zero
constant) on”™ with poles at(x;, y;)) (i = 1,...,g) and(A ¢, ur) and with a zero ados.

For anyg e C we consider

oy v + Bulx)

Foy=—=60 ) (8)

Taking a local parameterat oo 7, such asc = 1/¢? andy = 1/r%+1(1 + O(1)), we find
that F has a zero ato . Moreover, both the numerator and denominator vanish at the
points(x;, —y;), hence it is sufficient to have thgtis such that the numerator vanishes at
(Lr, —uy) to have the required function. Thus we tgkéo be given by

_pp—v@y) o wy)

= = . 9
p u(Ayr) mr+vdy) ©)

Notice thatg depends on the phase variables; one may think idelf as being a phase
variable, depending on the other phase variables (se€attmn 2.3 The zeros of” on 1_“f

are the pointsx;, y;) and cannot be explicitly computed as such. However, the polynomials
(#(x), v(x), W(x)) to which they correspond, take a simple form. Consider

y2— (@) + Bu(x))?  w(x) — 2Bv(x) — BZu(x)

(y—vx) = Bux))F(x,y) = u(xX)(x — As) - X=Xy

Counting degrees we find that the last expression is monic of degneeand is independent
of y, hence it is]"[f:l(x —X;), l.e.itisi(x). Thus we have obtained an explicit expression
for the first component oB; as follows:

_ BPu) +2Bv(x) — w(x)

i(x) = (10)
We claim that the second componentRyfis given by
v(x) = —v(x) — Bu(x) + Bu(x)
_ BG =y + Bu) + (x — Ay +28%)0(x) — pw(x) 1)

Afp—x

To show this, it suffices to verify that for generig(x), v(x), w(x)) both sides take the
same value ory different points (both sides are of degree at mgst 1 in x). This is
easily done by using the pointg;, y,) (j =1, ..., g); justexpress that;, y;) € I'r and
F(%;,7;) =0forl< j < g, tofind that

Vi =0(x;) = —v(x;) — Bu(x;)
forj =1,..., g. The formula forw (x) follows from

i()W(x) + 52(x) = f(x) = u@)wx) + v?(x),
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giving
@ = Ay A+ D2 +2B(x =y + BHu(x) = BPw(x)

W) = Af—x

12)

Egs. (10)—(12pive explicit formulas for all map8 (£ any section o€, — Pae11). We
will investigate the Poissonicity of the maps in Section 2.2

We finish this section by rewriting in terms of matrices. SincBg preserves by con-
struction the spectrum of the Lax matfixx), it must be given by a similarity transformation
of L(x),

L(x) = M@)Lx)M(x)™L (13)
Itis easy to verify that such a matri¥ is given by the formula
B x—Air+ ,32
M((x) = . 14
(x) ( 1 P 14)
Notice that def/ (x) = Ay — x.

2.2. Poissonicity

There are many (compatible) Poisson structures for the Mumford systé#p and they
can be obtained from a reduction of a natural clas® bfackets on the loop algebrait2)
(se€[19]) or from (almost) canonical brackets on the linearizing variableg 223e Explic-
itly, there is a Poisson structure for any univariate polynompial) of degree at most and
they are given by the following Poisson brackets for the polynomi@al, v(x) andw(x):

WG, (N = @), v =0, {u(x), v(y)? = “BEO) T uWeC0)

x =y
o _ VX)) —v(y)e(x)
{ux), w(»}¥=-2 Xy ,
{v(x), w(y}¥ = w(x)go(y; : j(y)(p(x) —u(x)p(y),
{wx), w(M}¥ =2WEx)p(y) — v()e(x)). (15)

We will show thatBe : (u(x), v(x), w(x)) — (@@(x), v(x), w(x))r is a Poisson map for
those sections for which A depends on the Casimirs gf -}¢ only. More precisely, denot-
ing the algebra of Casimirs ¢f, -}¥ by Z¥ we assume in the sequel thafactors over the
canonical mapp : P11 — Spe?, as in the following diagram:

o

SpeC VAL T P29+1

3 pis dual to the algebra homomorphistf < O(P2g+1).
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This assumption implies thathas trivial brackets with all phase variables; notice that this
does not imply thait has trivial brackets with all phase variables. One particular case of
interest is wher is constant.

Using(15)it can be shown by direct computation that the Poisson brackets of the tilded
variables are the same as those of the untilded variables—which proves ibat Poisson
map—nbut such computations are very long and tedious. However, by using the Poisson
bracket formalism that was introduced by the Leningrad school these computations become
feasible. In this formalism one computes the 4 matrix {L(x)®L(y)}, which is defined
similarly as the tensor product fx) andL (y), but taking the Poisson bracket of entries of
L (x) with entries ofL (y) instead of their product. Using this notati@rb) can be written as

{Lx)eL(M)}=[r(x —y), L1(x)p(y) + ¢(x)La(y)]
—[o ®o, Li(x)e(y) — ¢(x)L2(y)]. (16)
whereLi(x) = L(x) ® Id, L2(y) = 1d ® L(y),

0 1
o= ,
0 0

r(x) = -

and

o O O -
o » O O
o O +» O
= O O O

We need to verify that16) also holds for the tilded variables, which means, udig) =
M(x)L(x)M(x)~1, that
(M) LE)M ) oM () L()M () ™Y
=[r(x =), MEG)LEM @) @ 1de(y) + e(x)ld @ M(y)L()M(y) 1]
—[o ®a, M)LEMX) o) ®1d — 1d ® p(x)M()LMHMG) ™. (17)
In order to compute the left-hand side of this equation we need explicit formulas for
{L(x)®M (y)},for {M(x)®L(y)}andfor{M (x)®M (y)}.Itis easyto seethfd (x)eM(y)} =

0. In order to find the other brackets we need the brackeisvith the other phase variables.
They were computed from the definiti¢®) of 8, using the identityuif —u(rp)wry) —

v2(Ay), -}¥ = 0.

prp(x) — o)) + Bulx))

(p =
{u(x), B} G — A ,
2u rBo(x) — (A ) (B2u(x) + w(x) — u(x)(x — Ays))
Y _ _
{v(x), B)? = 20— 7) :
(), B = — B2+ x = A ro(x) + O ) (BPo(x) — w(x) — v(x)(x — Af))

mr(x —Ar)
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Using these formulas it is easy to verify that

_(9Op) 1M 1 oM
{L(x)@M(y)}—( 207 [L( ), M(x) o ] + @(x)M(x) e) ®_8ﬁ’
M @(ry) 10M
{M(x)®L(y)}———/3®< w [L( ), M(y)~ ﬂ]ﬂv(y)M(y) >

wheree = diag(1, —1). For future use we note the following identity:

Adymemmp (x —y)+0 Qo)

=rx—yY)+oQ®oc —eM(x)™ 1(X)%M(y) 1 (18)

Since{M (x)2M(y)} = 0 we get

{M(x)L(x)M (x)" oM (»)L(y)M (y) "1}
=1d® M) {M@x)SL()IL(x)M(x) "t ® M(y)™*
+M(x) @ ld{L(x)eM ()M (x) " ® L(y)M(y)~*
+M(x) ® M(P{LE)BL(IM(x) @ M(y) ™"
—M(x) ® M(Y)L)M ) HL&)SM ()M (x) ™ ®@ M(y)™*
~ M@ LEME) @ MO){M@)SL(»)IM(x) ™ ® M(y) ™.

From here on the computation is straightforward: substitute the above expressions for
{L(x)®L(»)}, {L(x)®M (y)} and{M (x)®L(y)} and use, besides the identfy8) the follow-
ing formulas, valid for arbitrary matriceGA® B)(C® D) = AC®BDand[A® B, C® D] =
AC® BD — CA® DB. Notice that since each expression is either linegr(ny), in ¢(x)
or in ¢(y) the computation can be split up in three shorter verifications.

It follows thatBg : (u(x), v(x), w(x)) — (@(x), v(x), w(x)) is a Poisson map for those
sectionst for which A depends on the Casimirs of -}# only. In view of the preceding
section they are Backlund transformations.

2.3. The existence of a sectign

We have deliberately omitted the question of thaéstenceof a (global) sectiore of
7 . Cg — Pag11. Infactitis easy to show that in the case of the Mumford system such a
(global) section does not exist. Indeed, let us supposerthd,, 1 — C is given. Since
P2g+1 consists of all monic polynomials of degreg 2 1 (¢ > 1) the regular function
f = f(ky), defined oriPy 1, is never a constant map. Therefore it takes the value O at
some pointfp, without being identically zero on any neighborhoodfef If A is to be the
first component of a sectidn i.e.£(f) = (Ay, uy, f) thenu s must be a regular map on
the affine spac®y, 1, satisfying;@ = f(1s). Onany neighborhood of this is however
impossible. On the other hand, itis clear that in a small neighborboofiany f € P41
a sectiorg exists: choose. : Py,11 — C such thatf (1) # 0. Thus the constructed
Béacklund transformations should either be interpreted semi-locally (i.e. on a neighborhood
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x~X(U), whereU is a neighborhood of a fixedy € P2g+1), Or one has to think of the
Backlund transformatioBs as a two-valued map. In the latter interpretation it is worth to
observe that the two translations which one obtains are opposite to each other, as follows
from

[(x,y) + (x, —y) — 200/] =0,

valid for any (x, y) € I'r. On the one hand, this implies that in a semgeis its own
inverse, on the other hand, it implies that evemaold iteration of B is only 2-valued,
not 2'-valued.

If one insists on having a Backlund transformation which is single-valued then one has to
pass to a cover of phase space, precisely as in the classical construction of Riemann surfaces
as the natural objects on which multi-valued algebraic functions become single-valued. We
wish to show now that this larger phase space inherits in fact a Poisson structure and an
a.c.i. system from the Mumford system, so that we have, in fact, constructed a single-valued
map for an a.c.i. system, which reduces to the Mumford system after taking the quotient
by an involution. Our arguments will be given here for the Mumford system, but apply also
to other systems, the involution being in general replaced by a higher order automorphism.
We fix a regular map. : P2,+1 — C and define the following quasi-projective variety:

M} = {(u, v, w, B)(u, v, w) € Mg, (Bu(ry) +v0s)? = f(hs), uGhs) #0}.

The natural ma[M(; — M, is a two-fold ramified cover, and the dynamics on this larger
space, in particular the Poisson brackets ,of andw with 8 follow from the relation

{(BuGp) +v0. )2 = fF(rp),} =0

(see[21] for general constructions of this type). Since all our formulas for the Backlund
transformation were expressed regularly in terms:of, w and g8 only, the Backlund
transformation is single-valued on this larger space. Obviously, the functions in involution
of the Mumford system lead to an algebra of functions in involution on the cover and, since
the dimension did not change, they still form an integrable system. To show that it is actually
an a.c.i. system we must investigate the nature of the generic fiber of the moment map. For
a genericf € P41 We have thatf (A ) # 0. If we denote the two square roots j6fx 1)

by + u r then the fiber ovey is reducible and its two components are given by

u@w) + 020 = f@),  PuGhp) +v(hp) = £py.

Notice that the two components do notintersect. Since we know that the varity given
by u(x)w(x) + v3(x) = f(x) is an affine part of the Jacobian aﬁp), we find that each
component is an affine part of \Ia_g); due to the fact thai(A r) = 0 along some divisor,
the divisor which is removed in the latter case is slightly larger than the one removed in the
former case. Since the lifted vector fields are also linear on these Jacobians this shows that
the integrable system that we have constructed is actually an a.c.i. system (with reducible
fibers).

Another way in which a global sectich in the case of the Mumford system can be
found is by passing to a subsystem, i.e. restricting phase space and its Poisson structure to a
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hyperplane on which the algebra of functions in involution restricts to an a.c.i. system. This
smaller a.c.i. system is also universal for hyperelliptic curves in the sense that, just as for
the Mumford system, every hyperelliptic Jacobian (minus its theta divisor) appears as one
of the fibers of its moment map. Suppose it an affine subspace &b, 1 andi is a
regular (or rational) function off such that thef (A r) = ¢, wherec is a constani; € C. It

can be shown that this implies that the miap constant. By adding-c to all elements off

we find that all these polynomials have a common ro@y replacings — x +rin f(x)

this amounts to saying that up to isomorphism the only reasonable subvariéfy of

which a global sectiog can exist is the subspafng, of polynomials(u(x), v(x), w(x))

for which u(0)w(0) + v3(0) = 0; the mapr must then be the zero map, the section is
given by » = (0, 0, f) and the translation on every fiber is given §,[0)  — co ¢]. Then

B = —vg/u, = we/ve and the Backlund transformation takes the following form:

WeVi_1  Welli_1
gVi gli
i =wj-1—2 + ,

Vg ig

v VoWi_1

~ 8 8 1
Ui =—v + —u; — +2
I/tg I/tg Mg u

Weli—1 VgWglhj—1
2
8

Since(0, 0) s is a Weierstral point for any € F the divisor 2(0, 0) y — ocoy) is linearly
equivalent to zero, in other word8, 0) y — co ¢ is a half period (two-torsion point) on each
Jacobian. This explains why the two opposite translations are identical and it shows that
this Bécklund transformation is an involutién.

2.4. Discretizations and continuum limits

We now wish to show that the mas provide a discretization of the Mumford system.
Mumford constructs for every element Bt a vector field onM, which is translation
invariant (linear) when restricted to each fiberyofHis vector field corresponding t& is
reconstructed here as the limit

im Be, (u(x), v(x), w(x)) — u(x), v(x), w(x))
t—0 t ’

where&, : P11 — C, converges as — 0 to the constant sectian, : Pag1 — Cg
f + ooy. The limit taken here is the one for which the sectiong) = (A ¢ (1), us (1), f)
take the form

1 1
&(f) = <72’ 71 (14 572+ 0ah). f> : (19)

whereag = u1 + wq is the second coefficient df, i.e. f(x) = x2T1 + qox2¢ +. ... Then

1 _
p=: (1+ %t% O(t3)> ,

4 This happens to be a Poisson subspace for many (but not all) of the Poisson structigssee[19] or
Section 2.2

5 The fact that this Béacklund transformation is an involution should not be confused with our earlier claim that
in a sensahe Backlund transformation is its own inverse.
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hence(10)—(12)take the form

ii(x) = u(x) + 2tv(x) + O(t?),
5(x) = v(x) — r(w(x) — (x — ug + wo)u(x)) + O(r?),
W(x) =w(x) — 2 (x — ug + wo)v(x) + O?). (20)

The coefficient of in (20)is (up to a factor of 2) precisely Mumford'’s vector fietd,, (see
[16, p. 3.43).

Let us now turn to Mumford’s general vector fiel&is (a € PY). These vector fields have
the property of being tangent to the curves— [P + (g — 1)oc] at the points(a, & by)
on every curvef (hereb? = f(a)), which suggests that these more general vector fields
may be constructed by taking an appropriate lihit, u ) — (a, by) of the composition
of two Béacklund transformations corresponding to a shift

[(pomp) = (@ bp)] =[g, ) + (a, —by) — 2004]

on each Jacobian. Our vector fields will be more general than Mumford’s vector fields
because we allow, to depend ory'. Concretely, we will first shift over(fz s, —b ) — oo ]

and then over(L ¢ (¢), ¢ (1)) — oo ¢]; the matrices going with these transformations (as in
(14)) will be denoted byP (x) andQ, (x). Then

_ _ 2
P(x)=< B x af+,3>

1 -B
with
_ by +vlay) _ w(ay) 21)
u(ay) by —v(af)’

the transformed. is denoted by as in(13). In particular,
w(x) 4 2Bv(x) — B2u(x)

i (x) = —a; U(x) = —v(x) + Bulx) — u(x). (22)
Also,
B) x—ip(t)+ B2(1)
=10 ")
with
B(t) = py(t) — f)()»f(t)).

(0. (1))
Notice thatg(0) = g since(r;(0), ur(0)) = (as,byr). Let M;(x) = Q;(x)P(x) be the

matrix defining their composition. To the deformation family(x) = M; (x)L(x)M,_l(x)
there corresponds a vector field #fy, defined by

A o= mwLeom e
dlafx_dft:o ((X)L(x)M;*(x)).
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In terms ofQ (x) this vector field is given by (a prime denotes a derivative with respegt to

dL
dr

(x) = [M{(x)Mo(x) ™, L(x)] = [Qp(x) Qg (x), L(x)].

We consider the family of sectiorfs = (A¢(¢), i r (1), f), whererr(t) = ay 4+t and
wyr(t) =/ f(ar+1). We will show below that

u(ar)

B0 = 2%, 23)
Then
/ -1 __; M(le) 2v(af) B ar _x_ﬂZ
Qo(x) Qg™ (x) = 2b(x —ay) ( 0  uay) ) <_1 8

o 1 v(ag) —by wlay)+ular)(x —ay)
B 2br(x —ay) u(ay) —v(ay) — by '

Removing a diagonal matrix from this matrix we get the following Lax equations:

dL 1 | L(ay) 0 u(ay)
= 5 ) L )
a,, = 20, [x—af * (o 0 )
which reduces, wheay = a is chosen independently ¢f, to Mumford’s vector fieldX,,

(up to a factor B¢ which can be absorbed ii.
Formula(23) remains to be shown.

, d ) —o(Ap(t))
0= —| =AY
£ O dr|,_g u(rg(1))
_d pwr@) +vlay+1) — pulay+1)
ot |,_q way +1)+2Bv(ay +1) — B2ulas +1)

_ wr) +vlay +1)— Bulay +1)
t—>0w(ay +1)+2Bv(ay +1) — ,32u(af +1)

WO +'ay) - pu'(ay)
~w'(ay) + 2BV (ay) — B2u'(ay)’

Taking the derivative Oh?(t) = u(hp()w(A (1)) + v2(h s (1)) atr = 0 we obtain

1
1 () = @(u(af)w/(af) +u(ap)wlay) +2v(ap)v'(ap)),

andw(a ) is easily eliminated from this equation by usinga r) = —2Bv(as)+B%u(ay),
aconsequence @@2). The announced formula f@f (0) follows after substituting this value
of u’f (0), upon using21).
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2.5. Normalizations of eigenvectors of Lax operators

In this section we describe another approach to Backlund transformations and we explain
how the two approaches are related. For this approach we assume that the a.c.i. system is
given in Lax form.

Let us recall (see, e.g8]) that a generic Lax matri.(x) € End(C"*1)[x] defines a
line bundle on the associated spectral curvedet(L(x) — y Id) = 0; generic means here
that the affine curvé™ is assumed smooth and that for genéricy) € I' the eigenspace
of L(x) corresponding to the eigenvalyés one-dimensional (both conditions are verified
for the genericL (x) of the Mumford system). Assuminfj(x) to be generic we denote,
as before, byl” the compact Riemann surface corresponding’tand we consider the
eigenvector map : I — P", which is defined, on the affine pieé¢g by

L(x)k(x,y) = yk(x,y).
An explicit description ok on an affine piece of" is given by the map
Kt (x, y) = (L(x) = yld)}, (24)

where 1< i < n + 1 is arbitrary,A”" stands for the adjoint of the matrik andA; stands
for the ith column of A. More precisely, every; is defined onI" \ S;, wheres; is a
collection of points and; S; = @. We will see shortly that we needl local representatives
ki i =1,...,n+ 1) of k for our computations. The line bundl® defined byL(x), is
given by L = «*H, where?{ is the hyperplane bundle d¥'. The degreel of L follows
from

degl = degk (I") degk. (25)

Itis a basic fact that pulling back a sectioof # gives a sectior*s whose zero locus is a
divisor D on I" such that D] = «*H (see[9, Chapter 1.1)] Since a section off is just a
hyperplane, this gives us an explicit way to compute the line bufidiePic’ (I") from the
Lax matrix:

L=[*(H Nk, (26)

whereH is any hyperplane ii?”. Moreover, the isomorphism Pie¢l”) = Jad[l™) is not
canonical and depends on the choice of an element ifrRi€"), a fact that we will now
exploit to construct Backlund transformations.

To do this we assume that the givérix) is generic in the above sense; without loss
of generality we may also assume that the image cu(Ve) is non-degenerate (i.e. it is
not contained in a hyperplane). Our main assumption, which will be relax8ddtion 3
is that deqC = g + n. Since the hyperplane bundk on P" is the line bundle which
corresponds to any hyperplane ®f, fixing a section oft{ is equivalent to fixing a hy-
perplaneH of P". By non-degeneracy this can be done by fixingoints p; on I" which
are in general position, and asking thétbe such thad_ p; < «*H (when all p; are
different this means thall = sparx(p;)}). Let us take another collection af points
pi in general position. We denote the corresponding hyperplané.4§ L(x) is another
Lax matrix, isospectral td.(x), with corresponding map : I — P" then we will say
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thatL(x) = B(L(x)) if

REHNRW) =) b =" (HN&() =Y pi. 27)
i=1 i=1
Notice that(27) implies that
Z=£®[l~71_pl]®"'®[ﬁn_pn]a (28)

whereL is given by(26) andZ is defined analogously. One notices that this equation is the
n-point analog oEq. (5) In fact, let us specialize this to the case- 1 and globalize the
construction to the phase space of the Mumford system and recover exactly the Backlund
transformations that we have constructed before.

If L(x) is a generic matrix oM, (the phase space of the Mumford system) thea 1
and the two local representativigt) of the eigenvalue magp are given by

k1 (x,y) > v =y and «2: (x,y) — —w) .
—u(x) v(x) —y

A hyperplaneH of P is just a point: writingx = ( : s) we find the following equations
for the divisorD = «*(H Nk (If)):

0= (v(x) + y)r +u(x)s, 0= —-wk)r+ (v(x) — y)s.

The degree of the image curve being 1 it suffices to determine the degree &how the
degree of the line bundle. Takinga: s) generic, we easily find precisefy+ 1 solutions
hence ded = g+1, showing that our main assumption is satisfied for the Mumford system.
Sincen = 1 we need to pick one point on every curﬁg to represent as an element

of the Jacobian J&€'y) = Pic®(I"y) and we need two points on every curve to construct
a Backlund transformation as (&7). We do this by picking the sectiorgs, andé which
were constructed iBection 2.1For the first choice, which corresponds to picking the point
ooy at every curve, we findog = (0 : 1); we let this choice correspond to the untilded
variables. We let the second choice, which is giver§ 0f) = (A ¢, s, f), correspond to

the tilded variables and we fifid

o= (@hy): —0s) —pyp) = @O0p) —pr:wy)).

In order to simplify the computation we will write as(1 : —8); it will follow later that this
definition of 8 agrees with the one given (). Eq. (28)now expresses that the solutions of

u(x) =0, v(x) =y,

are the same as the solutions of

—v(x) =y  —wx)
1- =0, 29
4=p ( —u(x)  vlx) —y) #)

6 GivenL(x) there areg (g + 1) values(x, ) where the first (second) representation breaks down, i.e. it may be
of the forma = (0 : 0). For genericL(x) those two sets of values are disjoint, in the non-generic case it suffices
to take a limit.
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except tha(29) also has(r ¢, i ¢) as a solution. If we eliminate from (29) we find that
W(x) + 2B7(x) — 2i(x) = 0 has as solutions; and the roots of, so

B2ii(x) — 2B5(x) — w(x)
)\.f —X '

u(x) = (30)
In orderto obtain the formula far(x) we take the first equation (29), —v(x) —y+ i (x) =

0 which has among its roots the solution@f) = 0 andv(x) = y. Itfollows that the same
is true for the polynomial-v(x) — v(x) — Bu(x) + Bu(x) = 0, but since this polynomial
has degree less thagnt is zero, giving

v(x) = —v(x) — Bu(x) + Bii(x). (31)
If we express thafh ¢, u ) is a solution tq(29), then(31) implies
Vo) Hmy ey —vGy)
u(ry) u(ryr)

as in(9). It follows that formulag30) and (31)escribe exactly the ma#, given by(10)
and (11) in their inverse form. Notice that we would have obtained an expression for the
mapsB; in their direct form by expressing that the solutions to

ﬂ:

’

u(x) =0, v(x) =y,

are the same as the solutions of

—v(x)—y —w)
1-p) =0, (32)
—u(x) v(x) —y

except tha(32) also hagi ¢, —u ) as a solution (this follows from the linear equivalence
Gopspp) + Gops —1p) ~1 2005).

It follows from [16] that the roots of the polynomialx) lead to a separation of variables.
This is one separation of variables; another one is giveBdy29)for the tilde variables.
Relating them by assuming that they have the same divisas a solution, we create a
Béacklund transformation which corresponds to a shift on each Jacobian parameterized by
a point(x s, i y) on its underlying curvd™s. Thus, in the Lax approach, our construction
of Backlund transformations leads to alternative separation of variables (given one sep-
aration of variables) and given a pair of separations of variables we recover a Backlund
transformation for the system.

2.6. Spectrality

We now come to a remarkable property of our Backlund transformations, which was
baptizedspectralityby [12]. In order to establish this property we will first consider an
isomorphism to another integrable system in which the Poisson structure takes a simple
form. We fix a monic polynomiap(x) of degreeg and without multiple roots.

p(x) = (x —a)(x —az) - (x —ayg),
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and we define an affine may, — C3+! by

L0, 000, win) = 1+ng /i Zgj LI +ng “
(p(x)ux,vx,wx = i:lx_ai, x—ai’x 1) 2i—a .

i=1

Explicitly, the map can be computed in terms of the coordinages. ., i, on C3+lpy

u(a;) v(a;) w(a;)
- . =1 . O ei =1 . _
Hk;,g,' (a; — ag) Hk;,gi (ai — ag) Hk;,g,' (ai —ag)
andeg = wo — Zl 1 @i Dividing both sides oEqgs. (15)by ¢(x)¢(y) and taking residues
atx = g; andy = a; we find that the variable§;, ¢;, f,} _, are generators for the
direct sum ofg copies of the Lie—Poisson algebra«¢2): forz j=1,...,¢g, we have
{hi,hj} =1{fi, fj} = {ei,e;} =0and

{ei, hj} = edij, {hi, fi} = fidij, {fi.ej} = 2h;5;. (33)
Let us denote the Casimir element coming fromitihecopy ofs((2) by C;, C; = hl2 +e; fi.
Then the equation of the spectral curve looks as follows:

ﬁ:

2
, £09) Ci H

= o = +Cm+§ Qx—%ﬁ+ ), (34)
where

o 2hihj +eifj+ejfi +e + (ai +eo0)fi,

i#i ai—dy

andCy is an extra Casimir. If we defin@s = /(1 y) then

Ci H;
A2 i
s =ir+Co+ ( + > ,
F= E: Of—a?  Ar—a
and the relatior{9) takes the form
PR 2o ihi/(hp —a)

14+ fi/yp —a)
Notice that orC3¢+1 the Poisson structure is independenpdbut that the Hamiltonians are
now dependent on the constasisvhich encode the Poisson structfire }¥ on M,. In fact,
the integrable system that we have obtained8fit! is the first member of the deformed

Gaudin magnet hierarchy froifif] and our Bécklund transformations for the Mumford
system are easily rewritten as Backlund transformations for this system. Explicitly we find

(35)

Fie B2 fi + 2Bh;i — e P B —ap+ B2 i + (@ —dy +287hi — e
T )\.f_al ’ L )"f_a[ )
L 2\2 ¢ L 21, _ p2,.
él-z—(al )‘f+ﬂ )< fi +)L2,3(at )Lf‘l‘,B Yhi — B ez’ (36)
foa

whereg is given by(35).
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We fix a sectiort of C, — P41 and we assume, as before, thatdepends on the
Casimirs of{-, -}¥ only, where£(f) = (A ¢, ). We restrict our Backlund transformation
B to a symplectic leaf of the Poisson structure by fixing generic values of all Casimirs
Cj,j=0,...,g. Then we have only 2independent (Darboux-type) variables, which we
choose to bé¢h;, ﬁ};f"zl, we can express the variables in terms of those (the expression
for eg was computed froni34)),

Ci — h? s
—L,  eo=Co-)_ fi,
fi i=1

e =

andx » becomes a constant, so we drop the ingigrkom the notation.

We will use the theory of canonical transformations to show tathas the spec-
trality property and we will find along the way an alternative, simpler, proof Bats
a Poisson map. Recall that a transformation (bijective map) betwegedifZensional)
symplectic manifolds is canonical (symplectic) if and only if it has a local generating
function F, i.e. in terms of canonical variabldgs;, y;) and (x;, ;) one has a function
F(x1,...,xg]X1, ..., Xg) such that

JIF - doF
yi=-— and 3y =——. (37)
8x,~ 8xi
In turn this is equivalent to the compatibility relations
Oyi _dyj o 0k _ 0y 9% _ 9y
3)6] 3)(1' ’ 3)2/ 3)?,‘ ’ ij 3)?,‘ ’
wherei, j = 1,..., g; in these formulas one views the transformation locally as a map
(X1, ..., Xg, X1, ..., Xg) = (¥1,.--, Vg, V1, ..., Yg). In the present case this means that
we have to viewry, ..., hg, h1, ..., hg as functions offa, . .., fe, f1, ..., f; and that we
need to verify the following compatibility relations:
dh; dh; - dh; 3k dh; - dh;
fism =l fimz=li—=  figm=-fi—= (38)
3f; dfi dfj dfi df; dfi

To do this we need to express the variabilesh; and g in terms of the variableg; and
fi- Multiplying both sides 0{10) by » — x and comparing the leading termsanwe find
B2 = 1 + wo — u1, leading to the following expression f@ras a function of f;, fi}le:

8
BZ=1+Co— Y (fi+ fi). (39)
i=1

Excluding thee variables fromEq. (36)of the mapB; : {h;, fi}i_; — {hi, fi};_; we find
the following % equations:

(hi + Bf)?> — . —ai) fifi — Ci =0, (40)
hi = —hi + B(fi — fi). (41)
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Notice that withs from (39)the first equation definés and then the second equation defines
h;, both as implicit functions of the variablég;, f; le. Straightforward computation leads
to

o f; oh; fi
ot _Jr d — = -2
of, 28 M 97 T 28
fori # jandto
dhi  fi | (h—a)f; ohi  fi  O—adfi

— =4+ ——Gi and —=-—" — ————
of; 28 20hi+Bf) " ofj 28 2(hi+Bfi)
for anyi, j. The compatibility condition§38) follow at once.

In fact, in the same way we can prove another property of the Backlund transformation,
its spectrality, which means that the variallesnda are also canonical, in a sense, or more
precisely, that the parameteenters in the generating functigh= F; in such a way that
for the 1 being expressed in terms pf;, f,»}f:1 variables we have a similar expression as
in (37):

. 0F)

=
Itfollows that the following compatibility conditions are sufficient for proving the spectrality
property of the Backlund transformation:
If _ oh; SO Ok

fi — and fiﬁ_ TS (42)

afi o :
Itis easily checked fron(B5) that these compatibility conditions indeed hold; the values of
the two expressions if#2) are given by

fi fifi fi fifi

"2 T 2+ p ™ T 28 T 2+ B

We have shown that our Backlund transformations are Poisson maps and have the spectrality
property whenp is monic of degreg and has no multiple root. Obviously the fact that

is monic is inessential. Moreover, all Poisson brackets are polynomial in terms of the roots
a; of ¢ hence these properties hold wheis any polynomial of degree at mogt

2.7. Addition formulas for thge function

In this section we show that our formul@k0) and (11)generalize the classical addition
formulas for the Weierstraf3 function to the case of (families of) hyperelliptic curves. Let
I" be an elliptic curve, written in the Weierstrafl3 form

Y2 =4X3 — g2X — ga.

Points on this curve are parameterizedgbyand its derivativep’: for any (X, Y) € I
there is az € C such that(X, Y) = (p (z), ©'(z)). We write the equation of” asy? =
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Fx) = x3 — (g2/%x — (g3/4), thereby fixingf € P3. We take two generic points af
and their sum [ is its own Jacobian, hence a grou@)y, 1 r) + (p, 9) = (p, ). On the
one hand, we can associate to the poiptsg) and(p, ¢) the corresponding polynomials
of the Mumford system, on the other hand, we can write them in terms @f fln@ction.
As for the former we get

ux)=x+ur=x—p, v(x) =v1=gq,
w(x) =x% — ux + w1 = x% + px+ 1(@4p? + g2)

for (p, ¢) and we get similar formulas faotp, g) by putting tildes over all variables. In
terms ofp, ¢, p andg formulas(10), (11) and (9Jin that order) take the form

F=p+ptr p=-1T1_ L4
p—p Af—p

As for the latter, let(p, q) = (9 (2), 9'(2)/2), (P, §) = (9 (), 9'(2)/2) and(rp, uy) =
(» (), '(z")/2). Then(43)reduces, after eliminatingto the following classical formulas:

(43)

1/¢ ‘@)
_(M) =p@)+pQE) +pE),

4\ p@)—p®
1 TeIN oo 2
4 (%) =p @)+ @) +p@E),

wherez =z + 7.

3. Bécklund transformationsin more complex situations
3.1. The even Mumford system

The Mumford system has a twin which was introduced by the second autfia8]in
where it was called the even master system; in this text we will call iettenMumford
system. The phase spatg of the even Mumford system consists of Lax operators

Lix) = v(x)  w(x) ’
ulx) —vx)
whereu(x), v(x) andw(x) are now subject to the following constraintgx) andw(x) are

monic and their degrees are respectivelndg + 2; the degree of(x) is at mostg — 1.
In this case we write

w(x) =x8 +urxd 14 fug, v(x) = vax¥ T 4 - g,
wx) =x8t2 w8t 4 4 We.

The mapy : M, — P41 is defined as irf4); notice thaty takes its values now in the
affine space of monic polynomials of degrege 2 2, explaining the adjectiveven The



22 V. Kuznetsov, P. Vanhaecke / Journal of Geometry and Physics 44 (2002) 1-40

main difference between the even and the odd Mumford system is that the spectral curves
Iy y? = f(x) = u(x)w(x) + v2(x) have now two points at infinity, a fact which has
drastic consequences for the geometry of the integrable systen2{§ee

Let us first construct Backlund transformations for this system by using the approach
described irBection 2.1We denote by, the universal curve ovéP,, 1 and we consider
sections of the natural projection: C, — P2,41, as inSection 2.11n this case there is
no natural section of : @g — P2g+1, SO We need to choose two sectionsrdb construct
a Backlund transformation (for the existence of such sections the remarksStotion
2.3 apply). To simplify the formulas for the Béacklund transformation and to make them
very similar to the formulas in the odd case we pick one of the sections such that every
f € P21 gets mapped to one of the two points at infinity, i.elip\ I's. We denote
this section by, and we pick another sectign Since Mumford’s prescriptiof6) and
(7) applies unchanged, the following variant(8) realizes the linear equivalence which is
needed in order to express a shift ovgff) — - (f)] on Jac(ff):

_r+ v(x) +ulx)(E(x—2rp)+p)  y+vx)+ Pulx)

F(x,y) = +1, 44
Y () (x — Ayp) () (x — Ap) (44)
whereg is such that the numerator vanisheg)at, —u r), so that
mr—v(dys)
= 45
B o) (45)

The £ in (44) depends on the chosen sectiny, its actual value, for a giverf being
determined by expressingandy in terms of a local parameter at the pofgt(f). The
rest of the computation is similar to the oneSection 2.1giving

N u(x)(x —Ap =+ ,3)2 T 20(x)(x — Ay £ B) —wx)
u(x) = (U1 — w_1— 2h; £ 28)(x — hp)
v(x)=—v(x) Fux)(x —Ay £ B) £u(x)(x — Ay +ur —u1 £+ p),
_u@w) +v3@) = P) oy —v(hy)

B i(x) U uGg)

The value of the variablé; in terms of the original variables is computed from the first
equation in(46) to be given by

L w2201 —wok 20(BF Ap) + (BFAp)
up—w_1—2ky 28 '

’

() (46)

ﬁlz)»f

The matrixM (x), defined as irf13) can in this case be taken as
X —Aptur —iu1E£f  Bur—i1 M) E(x—Ap)(x+Ar +w_1 — i)
+1 Xx—ArEp '

(47)

Notice that deM (x) = (x — A p)(u1 — w_1 — 2A s £ 28).
The integrable vector fields of the even Mumford system are Hamiltonian with respect
to a family of Poisson brackets, similar to the brack&g): if ¢ is a univariate polynomial
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of degree at most then one finds precisely the brackét$), except for the following two
brackets:
1
fv(), w»} = =y (w@)(y) —wy)ex)) — alx, Yulx)e(y),

{wx), w(y)} =2ax, ) (V@)e(R) —v(Vex)), alx,y)=x+y+w_1—u,

define a Poisson structure af,. Assuminge(x) monic and irreduciblep(x) = (x —
a1)(x —ap) - - - (x — a,), we define an affine mapl, — C3%2 by

(u(x) v(x) w(x))
p(x)" @) @(x)

= 1+i fi i b x24e 1x+eo+Z
izlx—ai’ X —a x—a; |’

i=1 ! i=1

As inthe case of the Mumford system we find that the variallies;, f; }li"zl are generators
forthe direct sum of copies of the Lie—Poisson algebrat®). The equation of the spectral
curve takes the form

2 ) :
J /) 24 cC_ 1x+C0+Z( G + i >,

2(x)  o2x) (x — a;)? —a

whereC; = hl2 + ¢; f;, the Casimir element coming from tlith copy ofs((2); more-

overC_1 =e_1+ Y54 fiandCo = eo + Y i_; fi(C_1 + a;) — (35, fi)? are extra
Casimirs. Fixing a generic symplectic leaf, these Casimirs are used to eliminate the variables
e_1, ..., eg giving the following equations forthe map=1, ..., g):

8
<22ﬁ —zxizﬁ—m) (A —a) fi fi + (filai = h = B) £ hj)* = C; =0,

i=1
B B B 8
hi=—hi F(fi — f)ai—r£p) £ fi > (fj -
i=1
and the following equation fgs:
,32 + 2(u1 — 121),3—)»2+k(2ﬁ1—w_1—u1)—u1ﬁ1 — wqo + uztiqw_1 + 2v1=0,
where

8 8
wr =y (fi —a), vi=Y_hi, up =Yy aiaj— Y afj,
i=1 i=1

i<j i#]

8
wa=Ca1-Y (a+f)

i=1

¢ \2
wo = Co— C— 12(% + fi) + <th) +) aiaj+ ) aifj.
i=1

i=1 i<j i#j
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Using these formulas the verification 88) and (42)(where iy is in this case again
defined byii; = py/@(hy) and it is assumed that; depends on the Casimirs only)
is now straightforward (but lengthy). This shows again that our mBpsire Poisson
maps and have the spectrality property whien depends on the Casimirs d¢f, -}¥
only.

In order to show that our map®: give a discretization of the even Mumford system,
we proceed as iection 2.4We leti ; = 1/¢ so that the first few terms ¢f are given

by

w_1—U1
2

1 1
B = :F? (1+ t+§(3u%—2u1w_1 - w%1—4u2+4w0:|:8v1)t2+0(t3)> .

A direct substitution in(46) yields

i(x) = u(x) F v(0)1 4+ 0(?),
9(x) = v(0) F 3(~w(0) +u() (¢ + (w-g — ug)x
+u% + wo — up — ugw_1))t + O(r?),
B(x) = wx) £ o) + (W1 — uDx + u3 + wo — uz — ugw_1)r + O(t?).

Moreover we can construct the analogs of Mumford’s vector figgs\We proceed as in
Section 2.4but special care has to be taken because now the curve has two points at infinity,
namelyoo y and the point that correspondsdo, under the hyperelliptic involution; the
latter point will be denoted bgro’f. Fixing a sectiorg, we write&(f) = (as, by) and we do
atranslation over: s, —b y) — 00 s]. The matrix going with this transformations is denoted

by P(x). Then we translate ove({ s (1), us(t)) — oo/f]; its matrix is denoted by, (x).

The product then corresponds to a translation o@er (), s (1)) — (ay, by)]. Explicitly,

for P(x) we take the lower signs if#7) to get

(x—a—l—ul—ﬁl—i—ﬂ ﬂ(ﬁl—ul—ﬂ)—(x—a)(x—l—a—i—w1—111))

P(x) =
-1 x—a+p

with

ug — 2v1 —wo — 2ur(ay — B) + (ay — p)?
up—w-_1—2ar+ 28

ﬁ]_:af—i-

’

_ br+v(ay) _ w(ay)
u(ay) by —viay)

For Q;(x) we take the upper sign and we find

X —Ap(t)+uy—utr+ B(@) *
0/(x) = ( )
1 x —Ap(0) + B@)
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wherex = B(1) (g —ut1 + B(#)) + (x — A (1)) (x + A5 (t) + w_1 — itt1) and

iip + 201 — Wo + 2d1(B(t) — Ap (1) + (B(1) + A s (1))?
1 —w_1 —2xp(t) +28()

1/:ll=)\f(t) +

9

py) —oy@))

PO=""2050)

In order to expresél in terms of the original phase variables, as needed in the computation,
one needs explicit formulas far, 01, w_1 andwg. Foriz andv; we find by expanding
the first Backlund transformation in terms powers of

ug —2(a — Bluz + (@ — B)%u1 — 2v2 + 2(a — f)vy — w1
ui—w-_1—2ar+ 28 ’
v1=—v1+uz— (a— Pluy —iip +it1(a —ug + ity — ).

Up=aiq +

We find as in the case of the Mumford system tBéd) = u; — i1 + 8 and that

A0 =1 =l - w—l—2a+2/3)%.

As we have seen in the Mumford case the vector field which corresponds to the deformation
family is given by

dL

dr, y

() = [Qp(x) Qg (x), L)),

which leads by direct substitution to

dL (x):i L(af)Jr 0 u(@p)(x+ay+ur—w-1) ol
dts, 2br | x —ay 0 0

As far as we could check these vector fields are new.

3.2. Generalized Jacobians (odd case)

We now consider a first case in which the fibers of the moment map are affine parts of
generalized (hyperelliptic) Jacobians. The main difference between the generalized Jacobian
case and the usual case is that generalized Jacobians have a larger symmetry group, leading
to more general Backlund transformations.

We first define phase space, which is denotenga moment majy : Mg — Pogi1,
we construct a natural map : Mg — M, onto the phase space of the Mumford system,
and we give a geometric description of the fibergofor anyg > 1, Mg is the space of
all Lax matrices of the form

<V(x) Wi(x) )
Lx) = ,
Ukx) —V(x)
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where the entries of.(x) are now subject to the following constrainfg(x) and W (x)
are monic and their degrees are respectigeindg + 1; the degree oV (x) is at mostg.
Writing

U)=x8 +Ux® 14 4 Uy, V() = Voxf 44 Vg,
W(x) =x8T1 4 Wox® + - + W,

we take the coefficients of these three polynomials as coordinaté§ ois clear that the
group of matrices of the form

N_l—r 48
=1y 1 (48)

acts onl\?lg by the adjoint action, whereis any function om?lg. In particular, taking = Vp
we get a map onto a subspace which is exactly the phase &fjasethe Mumford system;
we denote this natural map byand denote the compositigror by x; explicitly x is given

by L(x) = —detL(x). For f € P21 suchthatl; is smooth the fibex ~1(f) is an affine
part of Syn§*1 I';, the(g + 1)th symmetric product of  (recall that/"y has genug). To
see this, one associates(d(x), V (x), W(x)) € x ~1(f) the divisorD = Zf:ll(xi, Vi),
wherex; are the roots oW (x) andy; = —V (x;). It is easy to show that this realizes a
bijection betweery ~1(f) and an affine part of Syfi1(7°;).” The rational function

y=V@) = U®
W)  y+ V)

shows thaD is linearly equivalent to the divisd@® +oco s = Y ¢_, (x/, y/) + 0o, wherex/
arethe zeros d (x) andV (x/) = y/ fori = 1,..., g. This gives a geometric interpretation
of the mapr, and it shows that, under the above correspondence between pcxﬁngsauﬁ
divisors, the adjoint action by, maps divisors to linearly equivalent divisors.

We will show that this geometric picture leads, via our geometric construction of Backlund
transformations, to a family of Backlund transformatidhs, : M, — M, which makes
the following diagram commutative:

M, (49)

It should be clear that, since we are forced to work with divisors, we cannot (B)ites a
definitionfor B , because the effective divisor of degree- 1 that corresponds to a line
bundle of degreg + 1 is not unique. Accordingly we write down a general formula for a
map satisfying5) and then we specialize the arbitrary function that figures in it so as to

7 From this description it follows easily that the fibgr1(f) can also be described as an affine part of the
generalized Jacobian @f; with respect to the divisor® ; (see[20]).
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obtain a Backlund transformation. Explicitly, we ketf) = (A, ur, f), as before, and
we consider for a generic poitt/ (x), V(x), W(x)) € Mg the following function:

_ O=V@)x =2 +aBf) +aW(x)

Fx.7) W) (x — Ap)

We have chosen a combination of the parameteaad 8 such that, when we express that
the numerator of” vanishes a{x s, —u r), then we find

_ W(ky) _ mr—V(@QAr)
wr+ Vg U(hy)

so thatg is formally given by the same formul@) as in the Mumford system. With this
choice ofg we find for anyx thatF (x, y) hasD+(A ¢, ) = Zf:ll(xi, yi)+(hy, uy)asits
polar divisor and vanishes at infinity. It follows that the other zera8 @f, y) give a divisor
D which is linearly equivalent to the divis@ which is associated td@/ (x), V (x), W(x)),
upto ashiftove(i ¢, us)—oo . Multiplying F (x, y) by (y+V (x)) (x =X ¢ +af) —a W (x)
and usingy? = U (x) W (x) + V2(x) we find an equation for the-coordinates of the image
divisor and we deduce, as in the case of the Mumford system,

=g ap)?U (x) + 20(x — Ay +af)V (x) — a?W (x)

’

W(x) = (50)
Afp—Xx

By interpolation at the zeros ¥ we also find

70 = Bx—Ar+ap)Ux)+(x —rp+2aB)V(x) — aW(x)’ (51)

Af—Xx
and the formula fol7 (x) follows from U (x) W (x) + V2(x) = U (x)W (x) + V2(x),
2 _
Or) = B7U(x) + 28V (x) W(x). (52)

Af—x

This gives explicit formulas for the mag . In terms of matricesBe ,, is given byL —
MLM~1, whereM can be taken as follows:

M(x):(a * f+a’3). (53)
1 B

The commutativity 0f49)is a direct consequence of the equaltyy,q—gM = MNy,,
whereM is given by
, +Vo x—2Ar+ B+ Vo)?
i) = B+ Vo r+ B+ Vo) .
1 B+ W
If we comparg(14) and (53then we see that both matrices coincide whega 8, but, as

we will see, the choice = 8 does not lead to a Backlund transformation (whega 8 it
is not a Poisson map).
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We now come to Poissonicity of the maps that we have constructed. The Poisson structure
of the generalized Mumford system is given, in the notatioBedtion 2.2by

{Lx)®L(y)} =[r(x —y), L1(x)e(y) + ¢(x)L2(»)], (54)

whereyp(x) is a polynomial of at most degrgeWe takel » to be dependent on the Casimirs
only and we compute, as before, the brackets Witgiving

_ mrex) — e p)(Vx) + BU(x))

U P ¢ ’
{U(x), B} Y
2u rBe(x) — oA £)(B?U (x) + W(x))
Vx), 81 = —
{V(x), B} 20— 7p)
L Buse@) + 90 ) (BV (x) = W(x))
(W), B} =-p =) . (55)

Using these formulas we can determine for which choices @fhich could, a priori, be
any function on phase space) the n@p(x), V(x), W(x)) — (U(x),V(x), W(x)) is a
Poisson map. A (quite long) computation leads to the following conditions on

2
{a, Ux)} = _Cw, {a, V(x)} = _Cw +D,
s 2(x — Ay)
w Vv A
{a, W(x)} = C,BM + p(x), (o, B) = o( f)
o @uyp)

In these formulag” and D are any functions on phase space. However, since the left-hand
side of the first three expressions is polynomial jthe same must be true for the right-hand
side, which implies thaf = 0. Using the last equation and the definitiorgofve find that

D = 0 and we are left with

o(hf)

{o, U} ={a, V(0)} =0, {, W)} = o(x), {a, B} = 20,

(56)

It turns out that there is such an namelya = Vjp; to obtain the most general solution

it suffices to add any Casimir @f to V. A direct check that one gets for those values of

« indeed a Poisson map can be done quite easily by using the following formulas, which
follow from (54)—(56)

2
{L(x)@M(y>}=<¢2(Mf)[L< ) N(x)]+<p(x>N(x>) ®%— (0 g; o
(ML) =— Mg (‘”( 29D 1), N(y)]+¢(y>N(y)> o Mg azM ,
B 90 > dadp
0O 0 —a O
prp) |0 1 0 B
{M(x)@M(y>}=—ﬁ 00 -1 5|
0 O 0 0
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where

(27
Nx)=1/Ar —x .
-1 -B

In conclusion we have shown that whep anda — Vo depend only on the Casimirs then
the mapB: , is a Backlund transformation for the generalized Mumford system.

In order to check spectrality of the ma , wheni ; anda — Vo depend only on the
Casimirs one proceeds as in the case of the Mumford system. We fix a monic polynomial
¢(x) of degreeg with distinct rootsay, . . ., a, and we define an affine mag, — C38+2

by

<U(X) Vi(x) W(X))
p(x) o) @)

8 8 8
:<1+Z /i ho+zx ‘a,x+fo+zxela). (57)
i=1 T i=1 — G

b
X — da; i—1

In this case we get the bracké83) with addition one non-trivial brackefho, fo} = 1. We
denote the Casimir element coming from tltte copy ofs((2) by C;, C; = hi2 +¢; f; and

we denote the Casimir — Vg by C. We fix a symplectic leaf and we express the variables
for s fos for .., fginterms ofho, ..., hg, ho, ..., h, andi. To do this, first notice that

a=ho+C and B=C—ho,

as follows easily fronf51) and (57) The formulas for the variabled, .. ., f, follow from
(Bfi +h)* = fifih —a) — C; =0, (58)
hi +hi —afi + Bfi =0, (59)

which one derives fronkgs. (50)-(52)for Be, expressed in terms of the variablgs
and’;. Indeed, if we use the second equation to eliminatérom the first equation we
get

f#hola; = — hoho) + fi(( — ai) (hi + hi) + 2hihoho) + ho(C; — hf) = 0, (60)
and this definesn, . .., f, as a function of the variablgs; and/;; the second equation

in (58) then definesfy, .. ., fe as a function of these variables. As fey and fo, they are
given by

8 8
foz—)»-i-Zfi-}-h%—Zhoho, foz—)»-i-ij-}-h%—Zhoho,
i=1 i=1
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as follows also from(50)—(52) Using these formulas it is straightforward to verify the

following integrability conditions#, j =1, ..., g):
afi _f - O[]j,'f,‘
an O — a)(Bfi +a fi) = 2aB(hi + Bfi)
i _ i% __ Blifi
o ok —ai)(ﬂfi +afi) = 20B(hi + Bf)
/o _% - _1_ ,32 fifi
A dho —a)(Bfi + o fi) — 20B(hi + Bf;)
Vs 7y g . .
o 0t _ 4,3 1 |
dr  dho o1 A —a)(Bfi +afi) — 20B(hi + Bf)

This shows that the mag®: have the spectrality property. In the same way one can verify
the compatibility conditions

fi 3f]

= ok —f-z—fj 07

3 f;
i ffah

J

af;

0 -
fja fj fla_fll’

giving an alternative proof that the mapg are Poisson maps.

We now show that these Backlund transformation discretize the underlying integrable
system. The computation is similar as in the previous cases, except that one has to choose
the Casimix — Vo carefully so as to obtain the identity transformation in the limit— oo.

Since the point at infinity of the curve is a WeierstraR point wé.let =2 and we choose
a=Vo+1/t. Then

1 1
B="—Vots(Wo—Ur+ VAt + 02,
and we find by direct substitution
U(x) = U(x) + 2t (V(x) — VoU (x)) + O(1?),

V() = V@) +1(U@)3@2x + Wo — Ur — V@) — W(x)) + O(?),
W (x) =W (x) — t(V(x)(2x + Wo — U — V) — 2VoW (x)) + O(t?),

from which we can read off the vector field. For the vector fieXdsthe computation is
very similar to the one in the case of the Mumford system. Namely we take

((x x—af—ap )
P(x) =

1 —B
by +v(ay))/uayr); moreover we take

at) x—Ap@) +aB()
0:(x) = ,
1 B(t)

with @ = Vpandg =
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wherea(t) = Vo = B (so that in facte is independent of) and B(t) = (mr() —
V(A r(1))/U (s (2)), SO thatB(0) = —a. Using g’ (0) = U (a)/(2b ) we find
04 05 () L (V@b V@
X X)=——"— ,
0M7=0 2b(x—a)\ U@ -V

so that, after removal of a diagonal matrix, we find the following Lax equation:

dL 1 [Ly
a3 |

L(x):| .

x—ay’

We shortly indicate how the above maps, can also be found from the eigenvectors of
the Lax operator. Takingo = (1, 0) anda = (y, § — x) we express that the solutions to

—v(x) —y —wx)
(1 0 =0, (61)
—u(x)  v(x)—y
are the same as the solutions of
—v(x)—y —wk)
(y 86—x) =0, (62)
—u(x)  vx)—y

except tha(62) also hagA s, —u ) as a solution. By eliminating from (62) we find that

2 _ _ 2
W) = (x =8)Ux)—=2(x=§)yVx) —y W(x)’
X —Af

because the numerator of the above right-hand side is monic of dggre2 and van-
ishes at the roots div as well as atc = 1. By interpolation at the zeros v we find
that

(x =8 —ANUX) + (28 —Ap — x)y V(x) + y2W(x)
y(x —Af) '
We recover our formula&b0) and (51)Yhence als@52)) by takingy = « ands = A — af.

V(x) =

3.3. Generalized Jacobians (even case)

In this case phase spa&% is given by the space of triples of polynomi&lg(x), V (x),
W (x)) with the following degree constraints:

U(x):xg+1+ong_|_...+Ug, V(x) = Voxé 4 -+ V,,
W(x) =x8+ 4 Woxt + -+ W,.

In this case the spectral curve is of the foyf= f (x), wheref (x) = U (x)W (x) + V3(x)
is monic of degree 2+ 2. Wheny is irreducible the corresponding fiber of the moment
map x (which is given as in the other cases RyL(x)) = —detL(x)) is an affine part
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of Syms+! ff; this is shown by associating t&/ (x), V (x), W(x)) € x ~1(f) the divisor
D = Ziill(xi, yi), Wherex; are the roots ot/ (x) andy; = V (x;). We choose a sectiagn
andwele€(f) = (Ar, uyr, f). Forageneric pointU (x), V(x), W(x)) € Mg we consider
the function

_ O+ VE)x —a1) £UX)(x —a2)

oo U@ — i) ’

whereas anday satisfy the following linear equation (zero of the numeratooét the
point(A g, —pf)):

(—f + VOO —a) £UGR)Oy —a2) =0.
F(x,y)hasD + (Ap, uys) = Zfill(x,-, yi) + (Af, uy) as its polar divisor and vanishes
at infinity. It follows that the other zeros of (x, y) give a divisorD which is linearly

equivalent to the divisoP which is associated t@J (x), V (x), W(x)), up to a shift over
(A, nyr) — ooy, Itleads to the following formulas for the maf:

U@)(x —a2)? £ 2V (x)(x —a1)(x — a2) — W(x)(x — a1)?

Ux) = CG—1p) ;
V(x)= m[i(x —a2)(x —a)U(x) + ((x — a2)(x — a3)
+(xr—a)(x —aa) V() F (x —a)(x —az) W),
Wi — U@ — 0 FAVX)(x —a)(x —aa) + W) (x —3)?
('x) - ’
C(x —Ap)

where

C = 2(0g — ) + Ug £ 2Vp — Wo, (63)
and

Ol3:al—Cal_kf, a4=a2—CO{2_)\f. (64)

a1 — o2 a1l — o2

The above transformation can be rewritten in the form of the matrix equafianL (x) =
L(x)M (x) with the following matrixM:

( X —ao3 :I:(x—ot4))
M(x) = , (65)

+(x — o) X — o2

where the variabless, .. ., a4 are given by
:C — U F 2Vo + Wo)(—1)i~1C — Up £ 2V + W,
ai=Af+(€’ o F 2Vo + Wo)((-D) 0 o+ o)’ (66)
4C
wheree; = 1 fori = 1, 2 ande; = —1 otherwise.

Let us now turn to Poissonicity and spectrality. For every polynomafldegree at most
g + 1 we find a Poisson structufe -} which is given formally by precisely the same
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formulas as in the case considere®iection 3.2We can see from the above formulas that
it will be much easier to do further calculations if we make a simple similarity transform:

M(x) —> SMx)S™1, L(x) — SL(x)S7 1, (67)
where

S Lo 68

=1 +1) (68)

Let us denote the transformed matride6:) and M (x) by small letterst(x) andm(x),
respectively,

2(x) = SL(x)S~ L, I(x) = SL(x)S7 1, m(x) = SM(x)S~1,

and correspondingly,

(v(x) w(x) ) - (ﬁ(x) w(x) )

Lx) = : L(x) = )

ulx) —vx) ulx) —v(x)

The triple of new polynomials is as follows:
u(x) =uox® +--- +ug, v(x)::i:xg+1+voxg+--~+vg,
w(x) =wox® + - - + wy,

and the matrixn (x) has the following form:

m(x) =

1 [ 4C(x — X))+ woitg) =+2Cwo
2C + 2Ciig cz )

Note that the determinant of the matrin(x), as well as of the matri#/ (x), is expressed
in terms ofC:

detM (x) = detm(x) = C(x — A).

Suppose now that the polynomialx) is monic and has distinct roots, ..., a, and
consider the map defined by

1 Sof ~_hi e
e vt we0) = (2 Zo ) D )

@(x) (|

Itis anisomorphism betwee’i;lg, equipped with the Poisson structyre }#, and the direct
sum ofg + 1 copies of the Lie—Poisson algebrastf2). Notice thatug = Zfzo f; and

wo = Zfzo e;, so thain (x) depends only on variablesand f;. Therefore we také;, f;),

i =0,...,g, as independent variables. Then, it is easy to find the following formulas for
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the variablesh;, h;), j =0,..., g

C%h3 F ACiioejh; + 4e;(Claj — 1) fj + iide;) — C2C; =0,
%2 5 4Cwo i) + 47;(Claj — Mej + whfj) — C°C; =0,
C(hj — hj) = +2(ioe; — wo f)). (69)

As for the compatibility conditions:

oh; ok i ah oy Soh; ok
k_ =ej fj_~ k= =¢€;j )
dex de;’ “ofi df; 3 fr de;j

we have from(69) that

dh;  oh;

—J =2 =0, j#k,
which leads at once to the first two equations and to the third equatign#ok. The proof
of the third equation foi = k is easy by direct computation. The spectrality property also
holds, as one easily verifies the following formulas:

A oh; . oh;
e = o TigE T o
e; A dfj A
whereii = n/@(A).
We finish by computing the continuum flows, obtained by taking the limit O of the
family of sectionst; given byx = 1/ andu = F(1 + (Uo + Wo)t/2 + O(t2))/t8*1. In
order for the limit to exist we must take the Casimiiof the formC’ — 4, whereC’ does
not depend on.. Then
—2Up+ 2(x1— 1) Vp + 2Wy 2 C-201+DhHv
al = , a@Qp=-——
4 t 4
and in the limit our Backlund transformations lead, as in the other cases, to a vector field
which has the Lax forni’(x) = [L(x), N (x)], whereN (x) is given (up to a constant factor
1/8) by

2+2)Vo +(4x—C'—2Ug — (2 F 2) Vo + 2Wp)
+(4x — C' + 2Uo + (2F 2)Vo — 2Wo) —2+2)V '

In terms of (x) this become$ (x) = [I(x), n(x)], wheren(x) = VN(x)V 1 is given by
1[4 —C 4wo
nx) ==+= .
8 Ay C' —4x

The above vector fields is the analog of the vector figld of the Mumford system. The
analogs of the vector fields,, a € P! are constructed in the same way as in the other
cases.
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3.4. Geodesic flow on SO(4)

We now look at the case of an integrable geodesic flow on SO(4), whose underlying
metric appears as metric Il in the classification of integrable geodesic flows on SO(4). In
suitable coordinates, the basic vector figldof this a.c.i. system is given by the differential
equations

71 = 27526, 20 = 27324, 23 = z5(21 + z4),
24 = 22223, 75 = z3(z1 + z4), 26 = 22125,

and it admits the following quadratic first integrals:

Hi=25- 22, Hp = 7§ — 2§, Hz =25 — 25,
Hy= (21 + 24)® + 4(z3 — 2225 — 2326). (70)
Following [5] we let
u(x)=x2~|—<Zl+Zz+Z4+Z6—l> 2+ ’
2(z3 — z5) 2(z3 — 25)

and we letv(x) be the polynomial of degree at most 1, characterized by
v(0) = u(0)(z1 + z4 + 223), v(D) = u(1)(z1 + z4 + 2z5).

This map associates to any poihin C® an unordered pair of points on the algebraic curve
r:y? = f(x) =x(1—)[4x>hy — (4hy + ha)x® + (ha — h3 — hp)x + hg), (71)

whereh; denotes the value df; at P. Notice that the polynomiaf which defined™ is not

monic, its leading term being dependent on the integrals. As a consequence, the polynomial
w, defined byw (x) = f(x) — v2(x)/u(x), will not be monic and the map doestdefine a

map to the Mumford system (indeed, for most of the Poisson structures of this system this
leading term is not even a Casimir). For future use, noticeuif@t = —u (0)(z1+z4+223)2
andw(1) = —u(1)(z1 + z4 + 2z5)%, becausef has 0 and 1 as roots. Conversely, given
three such polynomials, v, w which satisfyv?(x) + u(x)w(x) = f(x), wheref has the

above form(71), the corresponding poirtty, . .., ze) € C® is reconstructed by using the
following formulas:

Ll l(r0 v e (MO _OY, o
“rms=\vo ww) 2T wo) "
“O_ by,
u@©@  u(D
in addition to the first three equations(if).

In order to construct Backlund transformations for this system we consider, for a fixed
point P € C8, the following rational function:

+v(x) + Pulx
F(x,y):y (x) + Bu(x)
u(x)(x —Ay)

21+ 26= ( (72)

: (73)
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and we demand that the numeratorfofanishes at the poirit. , — ), as in the case of
the Mumford system. It leads to

_ BPu(x) + 2Bv(x) — w(x)

- —4hi(Ay —x)

(B3 = 4h1B(x — A p)u(x) + (282 — dh1(x — A ))v(x) — fw(x)
Ahy(x — Ap)

u(x)

3

5(x) = , (74)

the value ofiv (x) is not needed for the computation. Writi(i€R)in terms of tilded variables
and substituting74) in it we find

73— 125 Ay rp—1
73— 25 Z1+Z4+ZZ3+,3_Z1+Z4+215+ﬂ>’
2+7a 173 — 25 (z1 + 24+ 223 + B)?
Z2+Z4__ZZ3—Z5 hiA ¢
fi+Zs 1Z3—Is(i+za+2s5+p)°
1+26  bz3— 25 hi(hy —1)

=2(z3 + z5) <

3

Since the map preserves the Hamiltonians the above three expressions are (in that order)
also equal to

723+ 25 22 — 24 71— 26
73+ 725 Z2—74 71—76

so that the above equations can be solved linearly in terms of the varfabld®e Poisson
matrix of a Poisson structure for this system is given by

0 26 —z5 0 —23 22— 25
-6 0 0 z6—2z3 0 —z1—2z4
z5 0 0 —z5 0 0
0 23—26 25 0 73 —22
Z3 0 0 —z3 0 0
225 —z2 z1+za O 22 0 0

If » depends on the Casimirs of this Poisson structure only, then the above map is a Poisson
map, so itis a Backlund transformation; moreover it has the spectrality property. This can be
verified directly by computing the brackdgs, z;} and verifying the compatibility relations.
Alternatively one uses the fact that the map which is induced on the triples of polynomials
(u(x), v(x), w(x)), as above, is a Backlund transformation for an a.c.i. system obtained
by removing in the Mumford system the restriction that the polynomidle monic (the
Poisson structures are obtained fr¢b6) by replacinge ® o with w — o ® o, wherew
denotes the leading coefficientw{x)). It suffices then to verify that the map which sends
(z1,...,26) t0o (u(x), v(x), w(x)) is a Poisson map and has the spectrality property when
one takes on the target space the Poisson structure corresponding te x(x — 1).
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3.5. The Hénon-Heiles potential

In this section we show an example how one gets Béacklund transformations for a.c.i.
systems whose generic level set of the integrals is a finite cover of a Jacobian. We do this
by lifting the Backlund transformation for the underlying family of Jacobians to the cover;
since such a lifting is not unique we get, in general, an implicitly defined correspondence,
rather than an explicit map.

We treat the case of the Hénon—Heiles system, which is given by the following Hamilto-
nian onC#, equipped with the standard symplectic structure,

H = 3(p? + pd) + 843 + 44%¢>.

A first integral is given by

F = —qap} + q1p1p2 + 4i(q? + 443).
We use the map defined by

u(x) = x2 — 2qox — ¢, v(x) = é(pzx +q1p1),

2
2 9
which is a morphism to the Mumford system, the latter being equipped with the Poisson

structure corresponding ta(x) = x. It follows from the results oBection 2that for any
constant. € C we get a Backlund transformation, given by= MLM ~1, where

w(x) =x3 + 2g2x% + (¢ + 4¢3)x — (75)

- 2
l p
—(p2x +q1p1)  x%+ 2232 + (¢ + 4gH)x — 2
Lix) = NZ 2
(x) = . ;
[
x% — 2qox — g2 —72(1?2)6 +q1p1)
and
B x—is+ B2
M(x) = ,
1 B,
where

g V2u s —i(pars +q1p1)
V202 = 2go00 — q?)

Also ;@ = f(ry) with
FO) = u@w) + v?(x) = x(x* — hx— g),

whereh andg are the values ol and G at the point(q1, g2, p1, p2). Poissonicity and
spectrality are a consequence of the fact that the @apy2, p1, p2) — (u, v, w), given
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by (75) is a Poisson map. One notices that in this case one does not get explicit formulas
for g1, g2, p1, p2 but forgf, g2, 41p1, p2, which stems from the fact that the generic level
manifolds of the integrals are 2:1 unramified covers of Jacobians.

4. Concluding remarks

We have constructed Backlund transformations for a large class of integrable systems.
Basically, we have considered four large families of integrable systems that are of interest in
mathematical physics. Indeed, if we choose the following parameterization of the generators
(hj,ej, fj) of a direct sum ofg or ¢ + 1 copies of the Lie—Poisson algebra «2),
in terms of the canonical Darboux variables (coordinates and moméptaly ), {p;,
qr} = ik

1 1, 1, 2C;
hjZEPjLIj’ fj=§€1j, €j=—§l7j+?,
J

then we deal with the following Hamiltonian systems:
(1) Inthe case of the Mumford system the Hamiltonian is of the form
2
1&G , GKe2a 1 &, 1({&,
HZEZP,'_Z__ZI_EZ%(%‘FCO)‘FZ qu ,
i=1 i=1 1 i=1 k=1

so this case is a generalization of thelimensional Garnier system.
(2) For the even Mumford system the Hamiltonian function describes the motion of a
particle in a potential of order 6:

H=—ZP,~ —27 - zZ(ai +a;iC_1+ Co)g;
i=1 i=1 i i=1

AT s 1K, ’
+ 1 E qx E (C_1+ 2ai)q; — 8 E qr | -
= iz o}

(3) Inthe odd generalized case we have an integrable system with linear potential

(4) Inthe even generalized case we haygedimensional harmonic oscillator
1& , &2 1 &,
H=3) n=) 7 -3 4"
i=0 i=0 4 i=0

In other words we have showed how to construct in a systematic way Backlund trans-
formations for integrable systems linearizable on hyperelliptic Jacobians or generalized
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hyperelliptic Jacobians. Since for many classical integrable systems it is known how
to embed them into Mumford systenfi@l], our construction produces many new
integrable discretizations of Liouville integrable systems, such as the Kowalevski,
Goryachev—Chaplygin and Euler tops, Toda lattices and the Gaudin magnet.

For further reading sei@,13].
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