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Abstract

We present a geometric construction of Bäcklund transformations and discretizations for a large
class of algebraic completely integrable systems. To be more precise, we construct families of
Bäcklund transformations, which are naturally parameterized by the points on the spectral curve(s)
of the system. The key idea is that a point on the curve determines, through the Abel–Jacobi
map, a vector on its Jacobian which determines a translation on the corresponding level set of the
integrals (the generic level set of an algebraic completely integrable systems has a group structure).
Globalizing this construction we find (possibly multi-valued, as is very common for Bäcklund
transformations) maps which preserve the integrals of the system, they map solutions to solutions and
they are symplectic maps (or, more generally, Poisson maps). We show that these have the spectrality
property, a property of Bäcklund transformations that was recently introduced. Moreover, we recover
Bäcklund transformations and discretizations which have up to now been constructed by ad hoc
methods, and we find Bäcklund transformations and discretizations for other integrable systems.
We also introduce another approach, using pairs of normalizations of eigenvectors of Lax operators
and we explain how our two methods are related through the method of separation of variables.
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1. Introduction

The theory of integrable maps got a boost, if was not virtually (re)started, a decade
ago, when Veselov developed a theory of Lagrange correspondences[24–26]. Roughly
speaking,integrable maps(also calledintegrable Lagrange correspondences) are symplec-
tic multi-valued mappings which have enough integrals of motion, this definition being
a proper analog of the classical Liouville integrability. In the main examples, studied by
him and later by others, the integrable maps that are constructed are time-discretizations
of some classical Liouville integrable systems (such as the Neumann system, the geodesic
flow on an ellipsoid, the Euler–Manakov top, the Toda lattice, Calogero–Moser systems
and other integrable families), see, for instance,[3,4,10–12,14,17,18]. It follows that these
symplectic maps associate to a given solution of the integrable system a new solution, a
property reminiscent of Bäcklund transformations for soliton equations; thus, one speaks
in this context often of aBäcklund transformationfor the integrable system.

Recently[12] a new property ofspectralityof Bäcklund transformations was introduced.
Namely, it was observed that when one searches for the simplest Bäcklund transformations
of an integrable system, then one actually finds a one-dimensional family{Bλ|λ ∈ C} of
them and, most importantly, that the variableµ which is essentially the conjugate1 to λ
is bound toλ by the equation of an algebraic curve (dependent on the integrals), which is
precisely the curve that appears in the linearization (integration) of the integrable system.
The termspectralitystems from the fact that these curves arise most often as spectral curves,
e.g. when the vector fields of the integrable system are given by Lax equations.

The purpose of this paper is to present a systematic construction of Bäcklund transfor-
mations for a large class of integrable systems which includes most classical integrable
systems and many new ones. Some of the flavors of our methods and results are as follows:

1. Our Bäcklund transformationsBλ are given by explicit formulas rather than implicit
equations.

2. We find big families of maps: one can let the parameterλ vary from one level manifold
of the integrals to another.

3. They are symplectic (or Poisson) with respect to several compatible symplectic (or
Poisson) structures.

4. Although our maps aren-valued (two-valued in the examples), they lead to single-valued
maps on any level manifold of the integrals.

5. The resulting multi-point maps will discretize a family of flows of the integrable system
(and not just a particular one).

6. The maps (and their iterates) are defined over an extension fieldQ(
√
p) of Q, wherep

depends on the initial conditions (values of the integrals) only.

These properties imply that our Bäcklund transformations are very well suited as symplectic
integrators for the underlying integrable systems (see[15]).

Our methods will be restricted to those integrable systems (defined overC) which
have “good” algebraic geometric properties. These systems, baptized algebraic completely

1 SinceBλ is symplectic it is given by a canonical transformationFλ, which depends onλ. The conjugate ofλ
is given by∂Fλ/∂λ.
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integrable systems (a.c.i. systems) by Adler and van Moerbeke (see[1]) have algebraic in-
tegrals and Poisson structures, and the generic common level set of the integrals is an affine
part of a complex algebraic torus (Abelian variety) on which the flow of the integrable vector
fields evolves linearly. A Bäcklund transformationBλ, as defined above, will leave each
such level set invariant. But it is well known that Abelian varieties are rigid in the sense
that a holomorphic map between Abelian varieties is a group automorphism, followed by
a translation. The automorphism group of an Abelian variety being finite,Bλ consists of
a pure translation if it depends effectively onλ and is the identity map for some value of
λ. If one wants to construct Bäcklund transformations, one may therefore be tempted to
prescribe for every level set ag-dimensional vector (g is the dimension of the level set)
but one is certainly doomed to fail when one wants to write down explicitly in algebraic
coordinates the map which results from a translation over this family of vectors.

When the Abelian varieties that appear in the a.c.i. system are Jacobians then there is a
special family of translations, given by pairs of points on the underlying algebraic curve
(the Jacobian of an algebraic curve of genusg is ag-dimensional Abelian variety). Using
theexplicitcorrespondence between the points of phase space and the points on a Jacobian
(represented either as divisors or line bundles on the underlying curve) we write down the
meromorphic function on the curve that realizes the linear equivalence as follows:

D+ P ∼l D̃+Q, (1)

whereP andQ are the two points on the curve and the divisorsD andD̃ are the two divi-
sors which correspond to a generic point on phase space and its image under the Bäcklund
transformation (this function is unique up to a constant factor). When expressed in terms
of the phase variables this provides us with the map that gives the desired translation over
the element [P −Q] of the Jacobian. If one fixes one of the points, sayQ, one recovers a
one-dimensional family of maps, indexed by a pointP on the curve. Notice that we can vary
the points from one Jacobian to the other; however, there is an unavoidable monodromy prob-
lem, which makes that the pointsP andQmay get interchanged (leading to precisely the op-
posite vector, hence the inverse Bäcklund transformation), thus leading to a two-valued map.

For example, for the (g-dimensional) Mumford system (see[21]), phase space is the
affine space of all matrices

L(x) =
(
v(x) w(x)

u(x) −v(x)

)
,

whereu, v andw are polynomials inx with u andw monic and

degv(x) < degu(x) = degw(x)− 1= g.
The family of maps that we construct are given by the similarity transformation

L(x) �→ M(x)L(x)M−1(x) (2)

with

M(x) =
(
β x − λf + β2

1 β

)
, (3)
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whereβ = (µf − v(λf ))/u(λf ) and(λf , µf ) is the chosen pointP (dependent onf ) on
the spectral curvey2 = f (x) = −detL(x) andQ is the point at infinity of this curve. It is
easy to see that these maps satisfy properties 1, 2, 4 and 6 above.

By direct computation we find, in each example, a large class of Poisson maps. In the
case of the Mumford system for example we show that whenP varies such that its first
coordinate depends on the Casimirs of the Poisson structure only, then we get a Poisson
map, thereby establishing property 3.

When the level manifolds of the a.c.i. system are not Jacobians then they are, in all
known examples where the integrals are known explicitly, covers of Jacobians, and we get
Bäcklund transformations in an implicit form, i.e. we get Lagrangian correspondences as in
Veselov’s original paper[24]. SeeSection 3.5for an example. The same applies to g.a.c.i.
systems (a.c.i. in the generalized sense, see[2]). When the level manifolds are more general
Abelian algebraic groups (a.c.i. in the sense of Mumford) then they are extensions of Abelian
varieties by one or more copies ofC∗ and our technique again applies, seeSections 3.2
and 3.3for examples.

When we letQ→ P then we find at the first order a vector field which is constant on every
level manifold becauseQ andP depend on the integrals only, so their restrictions to these
level manifolds are linear combinations of the integrable vector fields. They need not be
globally Hamiltonian, but we will present in our examples one-parameter families of points
(P,Q) which lead to precisely the integrable vector fields of the a.c.i. system (property 5).
In these cases the Bäcklund transformations should be considered as discretizations of the
integrable system. Since these Bäcklund transformations commute, by construction, one
may think of these as defining a discrete analog of an a.c.i. system.

Below we will also present another, but related, technique to construct the maps
that represent translations on the level manifolds (assumed to be affine parts of Jaco-
bians) of the integrals. For this it is assumed that phase space is given by Lax oper-
ators. We choose two different normalizations of the eigenvectors of the Lax operator,
leading to two different separations of variables. This results in a map which is identical
to the one that we constructed before. The reason is that the two different normaliza-
tions, which lead to linearly equivalent divisors, are chosen such that each has a different
fixed point in the resulting divisor; if we call these pointsP andQ then we recover pre-
cisely the above linear equivalence(1), and hence leads to the same Bäcklund transfor-
mation.

2. The Mumford system

2.1. Translations on hyperelliptic Jacobians

For a fixed integerg ≥ 1 the phase spaceMg of the (g-dimensional) Mumford system
(see[16]) is the affine spaceMg of Lax matricesL(x) of the form

L(x) =
(
v(x) w(x)

u(x) −v(x)

)
,
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whereu(x), v(x) andw(x) are polynomials, subject to the following constraints:u(x) and
w(x) are monic and their degrees are respectivelyg andg+1; the degree ofv(x) is at most
g − 1. Writing

u(x) = xg + u1x
g−1+ · · · + ug, v(x) = v1x

g−1+ · · · + vg,
w(x) = xg+1+ w0x

g + · · · + wg,
we can take the coefficients of these three polynomials as coordinates onMg. In particular
we will sometimes denote points ofMg by triples(u(x), v(x), w(x)). Let us denote byPn
the affine space of polynomialsf ∈ C[x] which are monic and have degreen. We will
usually viewP2g+1 (or, in the next section,P2g+2) as the space of hyperelliptic curves with
equationy2 = f (x); when all roots off are distinct then such a curve is smooth and its genus
is g. We denote such an affine curve byΓf and denote its smooth compactification, which
is a compact Riemann surface, byΓ̄f . It is well known that every compact hyperelliptic
Riemann surface of genusg is obtained in this way. The surjective mapχ : Mg → P2g+1
defined by

χ(L(x)) = −detL(x) = u(x)w(x)+ v2(x) (4)

is the moment map of an algebraic completely integrable system (a.c.i. system). This means
in the first place that there is a Poisson structure2 onMg with respect to whichχ∗(O(P2g+1))

is involutive (commutative for the Poisson bracket). Secondly, it means that the tangent space
to a generic fiberχ−1(f ) of χ is spanned by the Hamiltonian vector fields associated to
this involutive algebra; by the first condition these vector fields commute. Third, a generic
fiber ofχ is an affine part of a commutative algebraic group; in the present case, when the
roots off are distinct thenχ−1(f ) is an affine part of a complex algebraic torus, namely it
is isomorphic to the Jacobian of̄Γf , minus its theta divisor. Finally, it means that the flow
of the commuting Hamiltonian vector fields on each complex torus lifts to a linear flow on
its universal covering spaceCg.

It is convenient for our constructions to introduce the universal curveCg of P2g+1.
Intuitively speaking,Cg is constructed out ofP2g+1 by replacing every point ofP2g+1
by the curve which it represents. Explicitly,Cg can be represented as the affine variety

{(x, y, f )|x, y ∈ C, f ∈ P2g+1 and y2 = f (x)};
the natural projectionCg → P2g+1 will be denoted byπ . The partial compactification
of π : Cg → P2g+1, which is the quasi-projective variety obtained by compactifying the
fibers ofπ , will be denoted as̄Cg and we use the same notationπ for the extension ofπ
to C̄g.

The first useful observation that we make is that any sectionξ of π : Cg → P2g+1
leads to a family of transformations of phase space, where each transformation restricts to a
translation on every Jacobian of the system. This follows from the fact that there is a natural
sectionξ∞ of π : C̄g → P2g+1, which is given byξ∞(f ) = (∞f , f ), where∞f is the
unique point needed to compactifyΓf into Γ̄f . Indeed, ifξ is a section ofπ : Γg → P2g+1

2 There are in fact in the present case many (compatible) Poisson structures which make the Mumford system
into an a.c.i. system, see[19] andSection 2.2.
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then we get a commutative diagram

whereρ is defined asρ = ξ ◦ χ and we get a mapBξ : Mg → Mg by

L �→ L⊗ [ρ(L)− ρ∞(L)], (5)

whereρ∞ = ξ∞ ◦ χ . In this definition we use the fact that a generic pointL(x) of Mg
(more precisely: each point of any fiberχ−1(f ) for whichΓf is smooth) admits a natural
interpretation as a holomorphic line bundleL of degreeg over the Riemann surfacēΓf ,
wheref = χ(L(x)); thusL ∈ Picg(Γ̄f ) ∼= Jac(Γf ). Also, [D] stands for the line bundle
associated to a divisorD. By construction, the restriction ofBξ to a generic levelχ−1(f )

of the moment mapχ is a translation over [ξ(f )− ξ∞(f )]. On the one hand, this implies
thatBξ is isospectral: it leaves the fibers ofχ invariant. On the other hand, translations
in a commutative group obviously preserve translation invariant vector fields, henceBξ
leaves invariant all those vector fields onMg which restrict to translation invariant vector
fields on a generic fiber ofχ ; in particular eachBξ leaves the integrable vector fields of the
Mumford system invariant. Notice that it is unavoidable for such translation maps to have
poles, because a non-zero translation moves the theta divisor, hence every fiber ofχ will
have a divisor of points which are sent out of phase space.

Our second observation is that the mapsBξ can be effectively computed. Indeed, follow-
ing Mumford (who attributes this construction to Jacobi) the above mentioned interpretation
of a generic elementL(x) ∈ Mg as a line bundleL can be carried out explicitly as follows: to
the pointL(x) = (u(x), v(x), w(x)) ∈ χ−1(f )we associate the divisorD =∑g

i=1(xi, yi)

on Γf (hence the line bundleL = [D] on Γ̄f , whenf is supposed to have no multiple
roots) using the following simple prescription:

x1, . . . , xg are the zeros ofu(x), (6)

yi = v(xi) for i = 1, . . . , g. (7)

Assuming(u(x), v(x), w(x)) to be generic, we let̃L(x) = Bξ (L(x))which we also write as

(ũ(x), ṽ(x), w̃(x)) = Bξ (u(x), v(x), w(x)).
Since(u(x), v(x), w(x)) is generic its image does indeed belong toMg. We denote byD
the divisor

∑g

i=1(xi, yi) given by(6) and (7). According to(5) the line bundle to which
[D] is mapped is obtained by tensoring with [ρ[D]− ρ∞[D]]. We define regular functions
λ andµ onP2g+1 by ξ(f ) = (λ(f ), µ(f ), f ); in order to simplify the notation we will
write λf andµf for λ(f ) andµ(f ). Then(6) and (7)associate to(ũ(x), ṽ(x), w̃(x)) the
line bundleL̃ = [D̃] for which we have two different descriptions,

[D̃] =
[
g∑
i=1

(x̃i , ỹi )

]
=
[
g∑
i=1

(xi, yi)+ (λf , µf )−∞f

]
.
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The second equality expresses that
∑g

i=1(x̃i , ỹi ) +∞f and
∑g

i=1(xi, yi) + (µf , λf ) are
linearly equivalent. This means that there is a rational function (unique up to a non-zero
constant) onΓ̄ with poles at(xi, yi) (i = 1, . . . , g) and(λf , µf ) and with a zero at∞f .
For anyβ ∈ C we consider

F(x, y) = y + v(x)+ βu(x)
u(x)(x − λf ) . (8)

Taking a local parametert at∞f , such asx = 1/t2 andy = 1/t2g+1(1+ O(t)), we find
that F has a zero at∞f . Moreover, both the numerator and denominator vanish at the
points(xi,−yi), hence it is sufficient to have thatβ is such that the numerator vanishes at
(λf ,−µf ) to have the required function. Thus we takeβ to be given by

β = µf − v(λf )
u(λf )

= w(λf )

µf + v(λf ) . (9)

Notice thatβ depends on the phase variables; one may think ofβ itself as being a phase
variable, depending on the other phase variables (see alsoSection 2.3). The zeros ofF onΓ̄f
are the points(x̃i , ỹi ) and cannot be explicitly computed as such. However, the polynomials
(ũ(x), ṽ(x), w̃(x)) to which they correspond, take a simple form. Consider

(y − v(x)− βu(x))F (x, y) = y
2− (v(x)+ βu(x))2
u(x)(x − λf ) = w(x)− 2βv(x)− β2u(x)

x − λf .

Counting degrees we find that the last expression is monic of degreeg in x and is independent
of y, hence it is

∏g

i=1(x − x̃i ), i.e. it is ũ(x). Thus we have obtained an explicit expression
for the first component ofBξ as follows:

ũ(x) = β
2u(x)+ 2βv(x)− w(x)

λf − x . (10)

We claim that the second component ofBξ is given by

ṽ(x)=−v(x)− βu(x)+ βũ(x)

= β(x − λf + β
2)u(x)+ (x − λf + 2β2)v(x)− βw(x)

λf − x . (11)

To show this, it suffices to verify that for generic(u(x), v(x), w(x)) both sides take the
same value ong different points (both sides are of degree at mostg − 1 in x). This is
easily done by using the points(x̃j , ỹj ) (j = 1, . . . , g); just express that(x̃j , ỹj ) ∈ Γf and
F(x̃j , ỹj ) = 0 for 1≤ j ≤ g, to find that

ỹj = ṽ(x̃j ) = −v(x̃j )− βu(x̃j )
for j = 1, . . . , g. The formula forw̃(x) follows from

ũ(x)w̃(x)+ ṽ2(x) = f (x) = u(x)w(x)+ v2(x),
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giving

w̃(x) = − (x − λf + β
2)2u(x)+ 2β(x − λf + β2)v(x)− β2w(x)

λf − x . (12)

Eqs. (10)–(12)give explicit formulas for all mapsBξ (ξ any section ofCg → P2g+1). We
will investigate the Poissonicity of the mapsBξ in Section 2.2.

We finish this section by rewritingBξ in terms of matrices. SinceBξ preserves by con-
struction the spectrum of the Lax matrixL(x), it must be given by a similarity transformation
of L(x),

L̃(x) = M(x)L(x)M(x)−1. (13)

It is easy to verify that such a matrixM is given by the formula

M(x) =
(
β x − λf + β2

1 β

)
. (14)

Notice that detM(x) = λf − x.

2.2. Poissonicity

There are many (compatible) Poisson structures for the Mumford system onMg and they
can be obtained from a reduction of a natural class ofR brackets on the loop algebra ofsl(2)
(see[19]) or from (almost) canonical brackets on the linearizing variables (see[22]). Explic-
itly, there is a Poisson structure for any univariate polynomialϕ(x) of degree at mostg and
they are given by the following Poisson brackets for the polynomialsu(x), v(x) andw(x):

{u(x), u(y)}ϕ = {v(x), v(y)}ϕ = 0, {u(x), v(y)}ϕ = u(x)ϕ(y)− u(y)ϕ(x)
x − y ,

{u(x),w(y)}ϕ =−2
v(x)ϕ(y)− v(y)ϕ(x)

x − y ,

{v(x), w(y)}ϕ = w(x)ϕ(y)− w(y)ϕ(x)
x − y − u(x)ϕ(y),

{w(x),w(y)}ϕ = 2(v(x)ϕ(y)− v(y)ϕ(x)). (15)

We will show thatBξ : (u(x), v(x), w(x)) → (ũ(x), ṽ(x), w̃(x))t is a Poisson map for
those sectionsξ for whichλ depends on the Casimirs of{·, ·}ϕ only. More precisely, denot-
ing the algebra of Casimirs of{·, ·}ϕ byZϕ we assume in the sequel thatλ factors over the
canonical3 mapp : P2g+1 → SpecZϕ , as in the following diagram:

3 p is dual to the algebra homomorphismZϕ ↪→ O(P2g+1).
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This assumption implies thatλ has trivial brackets with all phase variables; notice that this
does not imply thatµ has trivial brackets with all phase variables. One particular case of
interest is whenλ is constant.

Using(15) it can be shown by direct computation that the Poisson brackets of the tilded
variables are the same as those of the untilded variables—which proves thatBξ is a Poisson
map—but such computations are very long and tedious. However, by using the Poisson
bracket formalism that was introduced by the Leningrad school these computations become
feasible. In this formalism one computes the 4× 4 matrix{L(x) L(y)}, which is defined
similarly as the tensor product ofL(x) andL(y), but taking the Poisson bracket of entries of
L(x)with entries ofL(y) instead of their product. Using this notation(15)can be written as

{L(x) L(y)} = [r(x − y), L1(x)ϕ(y)+ ϕ(x)L2(y)]

− [σ ⊗ σ,L1(x)ϕ(y)− ϕ(x)L2(y)], (16)

whereL1(x) = L(x)⊗ Id, L2(y) = Id ⊗ L(y),

σ =
(

0 1

0 0

)
,

and

r(x) = −1

x




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


 .

We need to verify that(16)also holds for the tilded variables, which means, usingL̃(x) =
M(x)L(x)M(x)−1, that

{M(x)L(x)M(x)−1 M(y)L(y)M(y)−1}
= [r(x − y),M(x)L(x)M(x)−1⊗ Idϕ(y)+ ϕ(x)Id ⊗M(y)L(y)M(y)−1]

− [σ ⊗ σ,M(x)L(x)M(x)−1ϕ(y)⊗ Id − Id ⊗ ϕ(x)M(y)L(y)M(y)−1]. (17)

In order to compute the left-hand side of this equation we need explicit formulas for
{L(x) M(y)}, for {M(x) L(y)}and for{M(x) M(y)}. It is easy to see that{M(x) M(y)} =
0. In order to find the other brackets we need the brackets ofβ with the other phase variables.
They were computed from the definition(9) of β, using the identity{µ2

f − u(λf )w(λf )−
v2(λf ), ·}ϕ = 0.

{u(x), β}ϕ = µf ϕ(x)− ϕ(λf )(v(x)+ βu(x))
µf (x − λf ) ,

{v(x), β}ϕ =−2µf βϕ(x)− ϕ(λf )(β2u(x)+ w(x)− u(x)(x − λf ))
2µf (x − λf ) ,

{w(x), β}ϕ =− (β
2+ x − λf )µf ϕ(x)+ ϕ(λf )(β2v(x)− βw(x)− v(x)(x − λf ))

µf (x − λf ) .
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Using these formulas it is easy to verify that

{L(x) M(y)} =
(
ϕ(λf )

2µf

[
L(x),M(x)−1∂M

∂β

]
+ ϕ(x)M(x)−1ε

)
⊗ ∂M
∂β
,

{M(x) L(y)} =−∂M
∂β

⊗
(
ϕ(λf )

2µf

[
L(y),M(y)−1∂M

∂β

]
+ ϕ(y)M(y)−1ε

)
,

whereε = diag(1,−1). For future use we note the following identity:

AdM(x)⊗M(y)(r(x − y)+ σ ⊗ σ)
= r(x − y)+ σ ⊗ σ − εM(x)−1⊗ ∂M

∂β
M(y)−1. (18)

Since{M(x) M(y)} = 0 we get

{M(x)L(x)M(x)−1 M(y)L(y)M(y)−1}
= Id ⊗M(y){M(x) L(y)}L(x)M(x)−1⊗M(y)−1

+M(x)⊗ Id{L(x) M(y)}M(x)−1⊗ L(y)M(y)−1

+M(x)⊗M(y){L(x) L(y)}M(x)−1⊗M(y)−1

−M(x)⊗M(y)L(y)M(y)−1{L(x) M(y)}M(x)−1⊗M(y)−1

−M(x)L(x)M(x)−1⊗M(y){M(x) L(y)}M(x)−1⊗M(y)−1.

From here on the computation is straightforward: substitute the above expressions for
{L(x) L(y)}, {L(x) M(y)} and{M(x) L(y)} and use, besides the identity(18)the follow-
ing formulas, valid for arbitrary matrices:(A⊗B)(C⊗D) = AC⊗BDand [A⊗B,C⊗D] =
AC⊗ BD− CA⊗ DB. Notice that since each expression is either linear inϕ(λf ), in ϕ(x)
or in ϕ(y) the computation can be split up in three shorter verifications.

It follows thatBξ : (u(x), v(x), w(x))→ (ũ(x), ṽ(x), w̃(x)) is a Poisson map for those
sectionsξ for which λ depends on the Casimirs of{·, ·}ϕ only. In view of the preceding
section they are Bäcklund transformations.

2.3. The existence of a sectionξ

We have deliberately omitted the question of theexistenceof a (global) sectionξ of
π : Cg → P2g+1. In fact it is easy to show that in the case of the Mumford system such a
(global) section does not exist. Indeed, let us suppose thatλ : P2g+1 → C is given. Since
P2g+1 consists of all monic polynomials of degree 2g + 1 (g ≥ 1) the regular function
f �→ f (λf ), defined onP2g+1, is never a constant map. Therefore it takes the value 0 at
some pointf0, without being identically zero on any neighborhood off0. If λ is to be the
first component of a sectionξ , i.e.ξ(f ) = (λf , µf , f ) thenµf must be a regular map on
the affine spaceP2g+1, satisfyingµ2

f = f (λf ). On any neighborhood off0 this is however
impossible. On the other hand, it is clear that in a small neighborhoodU of anyf ∈ P2g+1
a sectionξ exists: chooseλ : P2g+1 → C such thatf (λf ) �= 0. Thus the constructed
Bäcklund transformations should either be interpreted semi-locally (i.e. on a neighborhood
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χ−1(U), whereU is a neighborhood of a fixedf0 ∈ P2g+1), or one has to think of the
Bäcklund transformationBξ as a two-valued map. In the latter interpretation it is worth to
observe that the two translations which one obtains are opposite to each other, as follows
from

[(x, y)+ (x,−y)− 2∞f ] = 0,

valid for any (x, y) ∈ Γf . On the one hand, this implies that in a senseBξ is its own
inverse, on the other hand, it implies that even ann-fold iteration ofBξ is only 2-valued,
not 2n-valued.

If one insists on having a Bäcklund transformation which is single-valued then one has to
pass to a cover of phase space, precisely as in the classical construction of Riemann surfaces
as the natural objects on which multi-valued algebraic functions become single-valued. We
wish to show now that this larger phase space inherits in fact a Poisson structure and an
a.c.i. system from the Mumford system, so that we have, in fact, constructed a single-valued
map for an a.c.i. system, which reduces to the Mumford system after taking the quotient
by an involution. Our arguments will be given here for the Mumford system, but apply also
to other systems, the involution being in general replaced by a higher order automorphism.
We fix a regular mapλ : P2g+1 → C and define the following quasi-projective variety:

Mλ
g = {(u, v,w, β)|(u, v,w) ∈ Mg, (βu(λf )+ v(λf ))2 = f (λf ), u(λf ) �= 0}.

The natural mapMλ
g → Mg is a two-fold ramified cover, and the dynamics on this larger

space, in particular the Poisson brackets ofu, v andw with β follow from the relation

{(βu(λf )+ v(λf ))2− f (λf ), ·} = 0

(see[21] for general constructions of this type). Since all our formulas for the Bäcklund
transformation were expressed regularly in terms ofu, v,w and β only, the Bäcklund
transformation is single-valued on this larger space. Obviously, the functions in involution
of the Mumford system lead to an algebra of functions in involution on the cover and, since
the dimension did not change, they still form an integrable system. To show that it is actually
an a.c.i. system we must investigate the nature of the generic fiber of the moment map. For
a genericf ∈ P2g+1 we have thatf (λf ) �= 0. If we denote the two square roots off (λf )
by±µf then the fiber overf is reducible and its two components are given by

u(x)w(x)+ v2(x) = f (x), βu(λf )+ v(λf ) = ±µf .
Notice that the two components do not intersect. Since we know that the variety inMg, given
by u(x)w(x) + v2(x) = f (x) is an affine part of the Jacobian Jac(Γ̄f ), we find that each
component is an affine part of Jac(Γ̄f ); due to the fact thatu(λf ) = 0 along some divisor,
the divisor which is removed in the latter case is slightly larger than the one removed in the
former case. Since the lifted vector fields are also linear on these Jacobians this shows that
the integrable system that we have constructed is actually an a.c.i. system (with reducible
fibers).

Another way in which a global sectionξ in the case of the Mumford system can be
found is by passing to a subsystem, i.e. restricting phase space and its Poisson structure to a
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hyperplane on which the algebra of functions in involution restricts to an a.c.i. system. This
smaller a.c.i. system is also universal for hyperelliptic curves in the sense that, just as for
the Mumford system, every hyperelliptic Jacobian (minus its theta divisor) appears as one
of the fibers of its moment map. Suppose thatF is an affine subspace ofP2g+1 andλ is a
regular (or rational) function onF such that thef (λf ) = c, wherec is a constant,c ∈ C. It
can be shown that this implies that the mapλ is constant. By adding−c to all elements off
we find that all these polynomials have a common rootr. By replacingx → x + r in f (x)
this amounts to saying that up to isomorphism the only reasonable subvariety ofMg on
which a global sectionξ can exist is the subspace4 M ′

g of polynomials(u(x), v(x), w(x))

for which u(0)w(0) + v2(0) = 0; the mapλ must then be the zero map, the section is
given byλf = (0,0, f ) and the translation on every fiber is given by [(0,0)f −∞f ]. Then
β = −vg/ug = wg/vg and the Bäcklund transformation takes the following form:

ũi =wi−1− 2
wgvi−1

vg
+ wgui−1

ug
,

ṽi =−vi + vg
ug
ui − vgwi−1

ug
+ 2

wgvi−1

ug
− vgwgui−1

u2
g

.

Since(0,0)f is a Weierstraß point for anyf ∈ F the divisor 2((0,0)f −∞f ) is linearly
equivalent to zero, in other words(0,0)f −∞f is a half period (two-torsion point) on each
Jacobian. This explains why the two opposite translations are identical and it shows that
this Bäcklund transformation is an involution.5

2.4. Discretizations and continuum limits

We now wish to show that the mapsBξ provide a discretization of the Mumford system.
Mumford constructs for every element ofP1 a vector field onMg which is translation
invariant (linear) when restricted to each fiber ofχ . His vector field corresponding to∞ is
reconstructed here as the limit

lim
t→0

Bξt (u(x), v(x), w(x))− (u(x), v(x), w(x))
t

,

whereξt : P2g+1 → Cg converges ast → 0 to the constant sectionξ∞ : P2g+1 → C̄g :
f �→ ∞f . The limit taken here is the one for which the sectionsξt (f ) = (λf (t), µf (t), f )
take the form

ξt (f ) =
(

1

t2
,

1

t2g+1

(
1+ a0

2
t2+O(t4)

)
, f

)
, (19)

wherea0 = u1+w0 is the second coefficient off , i.e.f (x) = x2g+1+ a0x
2g + · · · . Then

β = 1

t

(
1+ w0 − u1

2
t2+O(t3)

)
,

4 This happens to be a Poisson subspace for many (but not all) of the Poisson structures onMg , see[19] or
Section 2.2.

5 The fact that this Bäcklund transformation is an involution should not be confused with our earlier claim that
in a sensethe Bäcklund transformation is its own inverse.
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hence(10)–(12)take the form

ũ(x)= u(x)+ 2tv(x)+O(t2),

ṽ(x)= v(x)− t (w(x)− (x − u1+ w0)u(x))+O(t2),

w̃(x)=w(x)− 2t (x − u1+ w0)v(x)+O(t2). (20)

The coefficient oft in (20) is (up to a factor of 2) precisely Mumford’s vector fieldX∞ (see
[16, p. 3.43]).

Let us now turn to Mumford’s general vector fieldsXa (a ∈ P1). These vector fields have
the property of being tangent to the curvesP �→ [P + (g − 1)∞] at the points(a,± bf )
on every curvef (hereb2

f = f (a)), which suggests that these more general vector fields
may be constructed by taking an appropriate limit(λf , µf )→ (a, bf ) of the composition
of two Bäcklund transformations corresponding to a shift

[(λf , µf )− (a, bf )] = [(λf , µf )+ (a,−bf )− 2∞f ]

on each Jacobian. Our vector fields will be more general than Mumford’s vector fields
because we allowaf to depend onf . Concretely, we will first shift over [(af ,−bf )−∞f ]
and then over [(λf (t), µf (t))−∞f ]; the matrices going with these transformations (as in
(14)) will be denoted byP(x) andQt(x). Then

P(x) =
(
−β x − af + β2

1 −β

)

with

β = bf + v(af )
u(af )

= w(af )

bf − v(af ) , (21)

the transformedL is denoted bỹL as in(13). In particular,

ũ(x) = w(x)+ 2βv(x)− β2u(x)

x − af , ṽ(x) = −v(x)+ βu(x)− βũ(x). (22)

Also,

Qt(x) =
(
β(t) x − λf (t)+ β2(t)

1 β(t)

)

with

β(t) = µf (t)− ṽ(λf (t))
ũ(λf (t))

.

Notice thatβ(0) = β since(λf (0), µf (0)) = (af , bf ). LetMt(x) = Qt(x)P (x) be the
matrix defining their composition. To the deformation familyL̃t (x) = Mt(x)L(x)M−1

t (x)

there corresponds a vector field onMg, defined by

dL

dtaf
(x) = d

dt

∣∣∣∣
t=0
(Mt(x)L(x)M

−1
t (x)).
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In terms ofQ(x) this vector field is given by (a prime denotes a derivative with respect tot)

dL

dtaf
(x) = [M ′

0(x)M0(x)
−1, L(x)] = [Q′0(x)Q

−1
0 (x), L(x)].

We consider the family of sectionsξt = (λf (t), µf (t), f ), whereλf (t) = af + t and
µf (t) =

√
f (af + t). We will show below that

β ′(0) = u(af )
2bf

. (23)

Then

Q′0(x)Q
−1
0 (x)=−

1

2bf (x − af )

(
u(af ) 2v(af )

0 u(af )

)(
β af − x − β2

−1 β

)

= 1

2bf (x − af )

(
v(af )− bf w(af )+ u(af )(x − af )
u(af ) −v(af )− bf

)
.

Removing a diagonal matrix from this matrix we get the following Lax equations:

dL

dtaf
(x) = 1

2bf

[
L(af )

x − af +
(

0 u(af )

0 0

)
, L(x)

]
,

which reduces, whenaf = a is chosen independently off , to Mumford’s vector fieldXa
(up to a factor 2bf which can be absorbed int).

Formula(23) remains to be shown.

β ′(0)= d

dt

∣∣∣∣
t=0

µf (t)− ṽ(λf (t))
ũ(λf (t))

= d

dt

∣∣∣∣
t=0

µf (t)+ v(af + t)− βu(af + t)
w(af + t)+ 2βv(af + t)− β2u(af + t) t

= lim
t→0

µf (t)+ v(af + t)− βu(af + t)
w(af + t)+ 2βv(af + t)− β2u(af + t)

=
µ′f (0)+ v′(af )− βu′(af )

w′(af )+ 2βv′(af )− β2u′(af )
.

Taking the derivative ofµ2
f (t) = u(λf (t))w(λf (t))+ v2(λf (t)) at t = 0 we obtain

µ′f (0) =
1

2bf
(u(af )w

′(af )+ u′(af )w(af )+ 2v(af )v
′(af )),

andw(af ) is easily eliminated from this equation by usingw(af ) = −2βv(af )+β2u(af ),
a consequence of(22). The announced formula forβ ′(0) follows after substituting this value
of µ′f (0), upon using(21).
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2.5. Normalizations of eigenvectors of Lax operators

In this section we describe another approach to Bäcklund transformations and we explain
how the two approaches are related. For this approach we assume that the a.c.i. system is
given in Lax form.

Let us recall (see, e.g.[8]) that a generic Lax matrixL(x) ∈ End(Cn+1)[x] defines a
line bundle on the associated spectral curveΓ : det(L(x)− y Id) = 0; generic means here
that the affine curveΓ is assumed smooth and that for generic(x, y) ∈ Γ the eigenspace
of L(x) corresponding to the eigenvaluey is one-dimensional (both conditions are verified
for the genericL(x) of the Mumford system). AssumingL(x) to be generic we denote,
as before, byΓ̄ the compact Riemann surface corresponding toΓ and we consider the
eigenvector mapκ : Γ̄ → Pn, which is defined, on the affine pieceΓ , by

L(x)κ(x, y) = yκ(x, y).
An explicit description ofκ on an affine piece of̄Γ is given by the map

κi : (x, y) �→ (L(x)− y Id)∧i , (24)

where 1≤ i ≤ n+ 1 is arbitrary,A∧ stands for the adjoint of the matrixA andAi stands
for the ith column ofA. More precisely, everyκi is defined onΓ \ Si , whereSi is a
collection of points and∩iSi = ∅. We will see shortly that we needall local representatives
κi (i = 1, . . . , n + 1) of κ for our computations. The line bundleL, defined byL(x), is
given byL = κ∗H, whereH is the hyperplane bundle onPn. The degreed of L follows
from

degL = degκ(Γ̄ )degκ. (25)

It is a basic fact that pulling back a sections ofH gives a sectionκ∗s whose zero locus is a
divisorD onΓ such that [D] = κ∗H (see[9, Chapter 1.1]). Since a section ofH is just a
hyperplane, this gives us an explicit way to compute the line bundleL ∈ Picd(Γ̄ ) from the
Lax matrix:

L = [κ∗(H ∩ κ(Γ̄ ))], (26)

whereH is any hyperplane inPn. Moreover, the isomorphism Picd(Γ̄ ) ∼= Jac(Γ̄ ) is not
canonical and depends on the choice of an element in Picd−g(Γ̄ ), a fact that we will now
exploit to construct Bäcklund transformations.

To do this we assume that the givenL(x) is generic in the above sense; without loss
of generality we may also assume that the image curveκ(Γ̄ ) is non-degenerate (i.e. it is
not contained in a hyperplane). Our main assumption, which will be relaxed inSection 3,
is that degL = g + n. Since the hyperplane bundleH on Pn is the line bundle which
corresponds to any hyperplane ofPn, fixing a section ofH is equivalent to fixing a hy-
perplaneH of Pn. By non-degeneracy this can be done by fixingn pointspi on Γ̄ which
are in general position, and asking thatH be such that

∑
pi ≤ κ∗H (when allpi are

different this means thatH = span{κ(pi)}). Let us take another collection ofn points
p̃i in general position. We denote the corresponding hyperplane byH̃ . If L̃(x) is another
Lax matrix, isospectral toL(x), with corresponding map̃κ : Γ̄ → Pn then we will say
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thatL̃(x) = B(L(x)) if

κ̃∗(H̃ ∩ κ̃(Γ̄ ))−
n∑
i=1

p̃i = κ∗(H ∩ κ(Γ̄ ))−
n∑
i=1

pi. (27)

Notice that(27) implies that

L̃ = L⊗ [p̃1− p1] ⊗ · · · ⊗ [p̃n − pn], (28)

whereL is given by(26)andL̃ is defined analogously. One notices that this equation is the
n-point analog ofEq. (5). In fact, let us specialize this to the casen = 1 and globalize the
construction to the phase space of the Mumford system and recover exactly the Bäcklund
transformations that we have constructed before.

If L(x) is a generic matrix ofMg (the phase space of the Mumford system) thenn = 1
and the two local representatives(24)of the eigenvalue mapκ are given by

κ1 : (x, y) �→
(
−v(x)− y
−u(x)

)
and κ2 : (x, y) �→

(
−w(x)
v(x)− y

)
.

A hyperplaneH of P is just a point: writing�α = (r : s) we find the following equations
for the divisorD = κ∗(H ∩ κ(Γf )):

0= (v(x)+ y)r + u(x)s, 0= −w(x)r + (v(x)− y)s.
The degree of the image curve being 1 it suffices to determine the degree ofκ to know the
degree of the line bundle. Taking a(r : s) generic, we easily find preciselyg + 1 solutions
hence degL = g+1, showing that our main assumption is satisfied for the Mumford system.
Sincen = 1 we need to pick one point on every curveΓ̄f to representL as an element
of the Jacobian Jac(Γ̄f ) = Picg(Γ̄f ) and we need two points on every curve to construct
a Bäcklund transformation as in(27). We do this by picking the sectionsξ∞ andξ which
were constructed inSection 2.1. For the first choice, which corresponds to picking the point
∞f at every curve, we find�α0 = (0 : 1); we let this choice correspond to the untilded
variables. We let the second choice, which is given byξ(f ) = (λf , µf , f ), correspond to
the tilded variables and we find6

�α = (ũ(λf ) : −ṽ(λf )− µf ) = (ṽ(λf )− µf : w̃(λf )).

In order to simplify the computation we will write�α as(1 :−β); it will follow later that this
definition ofβ agrees with the one given in(9). Eq. (28)now expresses that the solutions of

u(x) = 0, v(x) = y,
are the same as the solutions of

(1− β)
(
−ṽ(x)− y −w̃(x)
−ũ(x) ṽ(x)− y

)
= 0, (29)

6 GivenL(x) there areg (g+1) values(λ, µ)where the first (second) representation breaks down, i.e. it may be
of the form�α = (0 : 0). For genericL(x) those two sets of values are disjoint, in the non-generic case it suffices
to take a limit.
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except that(29) also has(λf , µf ) as a solution. If we eliminatey from (29) we find that
w̃(x)+ 2βṽ(x)− β2ũ(x) = 0 has as solutionsλf and the roots ofu, so

u(x) = β
2ũ(x)− 2βṽ(x)− w̃(x)

λf − x . (30)

In order to obtain the formula forv(x)we take the first equation in(29),−ṽ(x)−y+βũ(x) =
0 which has among its roots the solutions ofu(x) = 0 andv(x) = y. It follows that the same
is true for the polynomial−ṽ(x)− v(x)− βu(x)+ βũ(x) = 0, but since this polynomial
has degree less thang it is zero, giving

v(x) = −ṽ(x)− βu(x)+ βũ(x). (31)

If we express that(λf , µf ) is a solution to(29), then(31) implies

β = ṽ(λf )+ µf
ũ(λf )

= µf − v(λf )
u(λf )

,

as in(9). It follows that formulas(30) and (31)describe exactly the mapsBξ , given by(10)
and (11), in their inverse form. Notice that we would have obtained an expression for the
mapsBξ in their direct form by expressing that the solutions to

ũ(x) = 0, ṽ(x) = y,
are the same as the solutions of

(1− β)
(−v(x)− y −w(x)

−u(x) v(x)− y

)
= 0, (32)

except that(32)also has(λf ,−µf ) as a solution (this follows from the linear equivalence
(λf , µf )+ (λf ,−µf ) ∼l 2∞f ).

It follows from[16] that the roots of the polynomialu(x) lead to a separation of variables.
This is one separation of variables; another one is given byEq. (29)for the tilde variables.
Relating them by assuming that they have the same divisorD as a solution, we create a
Bäcklund transformation which corresponds to a shift on each Jacobian parameterized by
a point(λf , µf ) on its underlying curveΓf . Thus, in the Lax approach, our construction
of Bäcklund transformations leads to alternative separation of variables (given one sep-
aration of variables) and given a pair of separations of variables we recover a Bäcklund
transformation for the system.

2.6. Spectrality

We now come to a remarkable property of our Bäcklund transformations, which was
baptizedspectralityby [12]. In order to establish this property we will first consider an
isomorphism to another integrable system in which the Poisson structure takes a simple
form. We fix a monic polynomialϕ(x) of degreeg and without multiple roots.

ϕ(x) = (x − a1)(x − a2) · · · (x − ag),
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and we define an affine mapMg → C3g+1 by

1

ϕ(x)
(u(x), v(x), w(x)) =

(
1+

g∑
i=1

fi

x − ai ,
g∑
i=1

hi

x − ai , x + e0 +
g∑
i=1

ei

x − ai

)
.

Explicitly, the map can be computed in terms of the coordinatese0, . . . , hg onC3g+1 by

fi = u(ai)∏
k �=i (ai − ak)

, hi = v(ai)∏
k �=i (ai − ak)

, ei = w(ai)∏
k �=i (ai − ak)

,

ande0 = w0−
∑g

i=1 ai . Dividing both sides ofEqs. (15)by ϕ(x)ϕ(y) and taking residues
at x = ai and y = aj we find that the variables{hi, ei, fi}gi=1 are generators for the
direct sum ofg copies of the Lie–Poisson algebra ofsl(2): for i, j = 1, . . . , g, we have
{hi, hj } = {fi, fj } = {ei, ej } = 0 and

{ei, hj } = eiδij , {hi, fj } = fiδij , {fi, ej } = 2hiδij . (33)

Let us denote the Casimir element coming from theith copy ofsl(2) byCi ,Ci = h2
i +eifi .

Then the equation of the spectral curve looks as follows:

y2

ϕ2(x)
= f (x)

ϕ2(x)
= x + C0 +

g∑
i=1

(
Ci

(x − ai)2 +
Hi

x − ai

)
, (34)

where

Hi =
∑
j �=i

2hihj + eifj + ejfi
ai − aj + ei + (ai + e0)fi,

andC0 is an extra Casimir. If we definêµf = µf /ϕ(λf ) then

µ̂2
f = λf + C0 +

g∑
i=1

(
Ci

(λf − ai)2 +
Hi

λf − ai

)
,

and the relation(9) takes the form

β = µ̂f −
∑
i hi/(λf − ai)

1+∑i fi/(λf − ai)
. (35)

Notice that onC3g+1 the Poisson structure is independent ofϕ, but that the Hamiltonians are
now dependent on the constantsai which encode the Poisson structure{·, ·}ϕ onMg. In fact,
the integrable system that we have obtained onC3g+1 is the first member of the deformed
Gaudin magnet hierarchy from[7] and our Bäcklund transformations for the Mumford
system are easily rewritten as Bäcklund transformations for this system. Explicitly we find

f̃i = β
2fi + 2βhi − ei
λf − ai , h̃i = β(ai − λf + β

2)fi + (ai − λf + 2β2)hi − βei
λf − ai ,

ẽi =− (ai − λf + β
2)2fi + 2β(ai − λf + β2)hi − β2ei

λf − ai , (36)

whereβ is given by(35).
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We fix a sectionξ of Cg → P2g+1 and we assume, as before, thatλf depends on the
Casimirs of{·, ·}ϕ only, whereξ(f ) = (λf , µf ). We restrict our Bäcklund transformation
Bξ to a symplectic leaf of the Poisson structure by fixing generic values of all Casimirs
Cj , j = 0, . . . , g. Then we have only 2g independent (Darboux-type) variables, which we
choose to be{hi, fi}gi=1, we can express theei variables in terms of those (the expression
for e0 was computed from(34)),

ei =
Ci − h2

i

fi
, e0 = C0 −

g∑
i=1

fi,

andλf becomes a constant, so we drop the indexf from the notation.
We will use the theory of canonical transformations to show thatBξ has the spec-

trality property and we will find along the way an alternative, simpler, proof thatBξ is
a Poisson map. Recall that a transformation (bijective map) between (2g-dimensional)
symplectic manifolds is canonical (symplectic) if and only if it has a local generating
function F , i.e. in terms of canonical variables(xi, yi) and (x̃i , ỹi ) one has a function
F(x1, . . . , xg|x̃1, . . . , x̃g) such that

yi = ∂F

∂xi
and ỹi = − ∂F

∂x̃i
. (37)

In turn this is equivalent to the compatibility relations

∂yi

∂xj
= ∂yj
∂xi
,

∂ỹi

∂x̃j
= ∂ỹj
∂x̃i
,

∂ỹi

∂xj
= −∂yj

∂x̃i
,

wherei, j = 1, . . . , g; in these formulas one views the transformation locally as a map
(x1, . . . , xg, x̃1, . . . , x̃g) → (y1, . . . , yg, ỹ1, . . . , ỹg). In the present case this means that
we have to viewh1, . . . , hg, h̃1, . . . , h̃g as functions off1, . . . , fg, f̃1, . . . , f̃g and that we
need to verify the following compatibility relations:

fj
∂hi

∂fj
= fi ∂hj

∂fi
, f̃j

∂h̃i

∂f̃j
= f̃i ∂h̃j

∂f̃i
, fj

∂h̃i

∂fj
= −f̃i ∂hj

∂f̃i
. (38)

To do this we need to express the variableshi, h̃i andβ in terms of the variablesfi and
f̃i . Multiplying both sides of(10) by λ − x and comparing the leading terms inx we find
β2 = λ+ w0 − u1, leading to the following expression forβ as a function of{f̃i , fi}gi=1:

β2 = λ+ C0 −
g∑
i=1

(f̃i + fi). (39)

Excluding thee variables fromEq. (36)of the mapBξ : {hi, fi}gi=1 �→ {h̃i , f̃i}gi=1 we find
the following 2g equations:

(hi + βfi)2− (λ− ai)f̃ifi − Ci = 0, (40)

h̃i = −hi + β(f̃i − fi). (41)
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Notice that withβ from(39)the first equation defineshi and then the second equation defines
h̃i , both as implicit functions of the variables{f̃i , fi}gi=1. Straightforward computation leads
to

∂hi

∂fj
= fi

2β
and

∂h̃i

∂f̃j
= − f̃i

2β

for i �= j and to

∂hi

∂f̃j
= fi

2β
+ (λ− ai)fi

2(hi + βfi)δij and
∂h̃i

∂fj
= − f̃i

2β
− (λ− ai)f̃i

2(hi + βfi)δij

for anyi, j . The compatibility conditions(38) follow at once.
In fact, in the same way we can prove another property of the Bäcklund transformation,

its spectrality, which means that the variablesµ̂ andλ are also canonical, in a sense, or more
precisely, that the parameterλ enters in the generating functionF = Fλ in such a way that
for theµ̂ being expressed in terms of{f̃i , fi}gi=1 variables we have a similar expression as
in (37):

µ̂ = ∂Fλ
∂λ
.

It follows that the following compatibility conditions are sufficient for proving the spectrality
property of the Bäcklund transformation:

fi
∂µ̂

∂fi
= ∂hi
∂λ

and f̃i
∂µ̂

∂f̃i
= −∂h̃i

∂λ
. (42)

It is easily checked from(35) that these compatibility conditions indeed hold; the values of
the two expressions in(42)are given by

− fi
2β
+ fif̃i

2(hi + βfi) and − f̃i

2β
+ fif̃i

2(hi + βfi) .

We have shown that our Bäcklund transformations are Poisson maps and have the spectrality
property whenϕ is monic of degreeg and has no multiple root. Obviously the fact thatϕ
is monic is inessential. Moreover, all Poisson brackets are polynomial in terms of the roots
ai of ϕ hence these properties hold whenϕ is any polynomial of degree at mostg.

2.7. Addition formulas for the℘ function

In this section we show that our formulas(10) and (11)generalize the classical addition
formulas for the Weierstraß℘ function to the case of (families of) hyperelliptic curves. Let
Γ be an elliptic curve, written in the Weierstraß form

Y 2 = 4X3− g2X − g3.

Points on this curve are parameterized by℘ and its derivative℘′: for any (X, Y ) ∈ Γ
there is az ∈ C such that(X, Y ) = (℘ (z), ℘′(z)). We write the equation ofΓ asy2 =
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f (x) = x3 − (g2/4)x − (g3/4), thereby fixingf ∈ P3. We take two generic points onΓ
and their sum (Γ is its own Jacobian, hence a group):(λf , µf )+ (p, q) = (p̃, q̃). On the
one hand, we can associate to the points(p, q) and(p̃, q̃) the corresponding polynomials
of the Mumford system, on the other hand, we can write them in terms of the℘ function.
As for the former we get

u(x)= x + u1 = x − p, v(x) = v1 = q,
w(x)= x2− u1x + w1 = x2+ px+ 1

4(4p
2+ g2)

for (p, q) and we get similar formulas for(p̃, q̃) by putting tildes over all variables. In
terms ofp, q, p̃ andq̃ formulas(10), (11) and (9)(in that order) take the form

β2 = p + p̃ + λ, β = − q + q̃
p − p̃ =

µ− q
λf − p . (43)

As for the latter, let(p, q) = (℘ (z), ℘′(z)/2), (p̃, q̃) = (℘ (z̃), ℘′(z̃)/2) and(λf , µf ) =
(℘ (z′), ℘′(z′)/2). Then(43)reduces, after eliminatingβ to the following classical formulas:

1

4

(
℘′(z)+ ℘′(z̃)
℘ (z)− ℘(z̃)

)2

=℘(z)+ ℘(z̃)+ ℘(z′),

1

4

(
℘′(z′)− ℘′(z)
℘ (z′)− ℘(z)

)2

=℘(z)+ ℘(z̃)+ ℘(z′),

wherez̃ = z+ z′.

3. Bäcklund transformations in more complex situations

3.1. The even Mumford system

The Mumford system has a twin which was introduced by the second author in[23],
where it was called the even master system; in this text we will call it theevenMumford
system. The phase spaceMg of the even Mumford system consists of Lax operators

L(x) =
(
v(x) w(x)

u(x) −v(x)

)
,

whereu(x), v(x) andw(x) are now subject to the following constraints:u(x) andw(x) are
monic and their degrees are respectivelyg andg + 2; the degree ofv(x) is at mostg − 1.
In this case we write

u(x)= xg + u1x
g−1+ · · · + ug, v(x) = v1x

g−1+ · · · + vg,
w(x)= xg+2+ w−1x

g+1+ · · · + wg.
The mapχ : Mg → P2g+1 is defined as in(4); notice thatχ takes its values now in the
affine space of monic polynomials of degree 2g + 2, explaining the adjectiveeven. The
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main difference between the even and the odd Mumford system is that the spectral curves
Γf : y2 = f (x) = u(x)w(x) + v2(x) have now two points at infinity, a fact which has
drastic consequences for the geometry of the integrable system (see[21]).

Let us first construct Bäcklund transformations for this system by using the approach
described inSection 2.1. We denote byCg the universal curve overP2g+1 and we consider
sections of the natural projectionπ : Cg → P2g+1, as inSection 2.1. In this case there is
no natural section ofπ : C̄g → P2g+1, so we need to choose two sections ofπ to construct
a Bäcklund transformation (for the existence of such sections the remarks fromSection
2.3 apply). To simplify the formulas for the Bäcklund transformation and to make them
very similar to the formulas in the odd case we pick one of the sections such that every
f ∈ P2g+1 gets mapped to one of the two points at infinity, i.e. inΓ̄f \ Γf . We denote
this section byξ∞ and we pick another sectionξ . Since Mumford’s prescription(6) and
(7) applies unchanged, the following variant to(8) realizes the linear equivalence which is
needed in order to express a shift over [ξ(f )− ξ∞(f )] on Jac(Γ̄f ):

F(x, y) = y + v(x)+ u(x)(±(x − λf )+ β)
u(x)(x − λf ) = y + v(x)+ βu(x)

u(x)(x − λf ) ± 1, (44)

whereβ is such that the numerator vanishes at(λf ,−µf ), so that

β = µf − v(λf )
u(λf )

. (45)

The± in (44) depends on the chosen sectionξ∞, its actual value, for a givenf being
determined by expressingx andy in terms of a local parameter at the pointξ∞(f ). The
rest of the computation is similar to the one inSection 2.1, giving

ũ(x)= u(x)(x − λf ± β)
2± 2v(x)(x − λf ± β)− w(x)

(u1− w−1− 2λf ± 2β)(x − λf ) ,

ṽ(x)=−v(x)∓ u(x)(x − λf ± β)± ũ(x)(x − λf + u1− ũ1± β),

w̃(x)= u(x)w(x)+ v
2(x)− ṽ2(x)

ũ(x)
, β = µf − v(λf )

u(λf )
. (46)

The value of the variablẽu1 in terms of the original variables is computed from the first
equation in(46) to be given by

ũ1 = λf + u2± 2v1− w0 ± 2u1(β ∓ λf )+ (β ∓ λf )2
u1− w−1− 2λf ± 2β

.

The matrixM(x), defined as in(13)can in this case be taken as(
x − λf+u1− ũ1±β β(u1−ũ1±β)±(x−λf )(x+λf + w−1− ũ1)

±1 x − λf ± β

)
. (47)

Notice that detM(x) = (x − λf )(u1− w−1− 2λf ± 2β).
The integrable vector fields of the even Mumford system are Hamiltonian with respect

to a family of Poisson brackets, similar to the brackets(15): if ϕ is a univariate polynomial
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of degree at mostg then one finds precisely the brackets(15), except for the following two
brackets:

{v(x), w(y)}ϕ = 1

x − y (w(x)ϕ(y)− w(y)ϕ(x))− α(x, y)u(x)ϕ(y),
{w(x),w(y)} = 2α(x, y)(v(x)ϕ(y)− v(y)ϕ(x)), α(x, y) = x + y + w−1− u1,

define a Poisson structure onMg. Assumingϕ(x) monic and irreducible,ϕ(x) = (x −
a1)(x − a2) · · · (x − ag), we define an affine mapMg → C3g+2 by(

u(x)

ϕ(x)
,
v(x)

ϕ(x)
,
w(x)

ϕ(x)

)

=
(

1+
g∑
i=1

fi

x − ai ,
g∑
i=1

hi

x − ai , x
2+ e−1x + e0 +

g∑
i=1

ei

x − ai

)
.

As in the case of the Mumford system we find that the variables{hi, ei, fi}gi=1 are generators
for the direct sum ofg copies of the Lie–Poisson algebra ofsl(2). The equation of the spectral
curve takes the form

y2

ϕ2(x)
= f (x)

ϕ2(x)
= x2+ C−1x + C0 +

g∑
i=1

(
Ci

(x − ai)2 +
Hi

x − ai

)
,

whereCi = h2
i + eifi , the Casimir element coming from theith copy of sl(2); more-

overC−1 = e−1 +
∑g

i=1 fi andC0 = e0 +
∑g

i=1 fi(C−1 + ai) − (
∑g

i=1 fi)
2 are extra

Casimirs. Fixing a generic symplectic leaf, these Casimirs are used to eliminate the variables
e−1, . . . , eg giving the following equations for the map(i = 1, . . . , g):(

g∑
i=1

2fi − 2λ± 2β − C−1

)
(λ− ai)fi f̃i + (fi(ai − λ± β)± hi)2− Ci = 0,

h̃i = −hi ∓ (fi − f̃i )(ai − λ± β)± f̃i
g∑
i=1

(fj − f̃j ),

and the following equation forβ:

β2± 2(u1− ũ1)β−λ2+λ(2ũ1−w−1−u1)−u1ũ1− w0 + u2+ũ1w−1± 2v1=0,

where

u1 =
g∑
i=1

(fi − ai), v1 =
g∑
i=1

hi, u2 =
∑
i<j

aiaj −
∑
i �=j
aifj ,

w−1 = C−1−
g∑
i=1

(ai + fi),

w0 = C0 − C−1

g∑
i=1

(ai + fi)+
(
g∑
i=1

fi

)2

+
∑
i<j

aiaj +
∑
i �=j
aifj .
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Using these formulas the verification of(38) and (42)(where µ̂f is in this case again
defined byµ̂f = µf /ϕ(λf ) and it is assumed thatλf depends on the Casimirs only)
is now straightforward (but lengthy). This shows again that our mapsBξ are Poisson
maps and have the spectrality property whenλf depends on the Casimirs of{·, ·}ϕ
only.

In order to show that our mapsBξ give a discretization of the even Mumford system,
we proceed as inSection 2.4. We letλf = 1/t so that the first few terms ofβ are given
by

β = ∓1

t

(
1+w−1−u1

2
t+1

8
(3u2

1−2u1w−1− w2
−1−4u2+4w0±8v1)t

2+O(t3)

)
.

A direct substitution in(46)yields

ũ(x)= u(x)∓ v(x)t +O(t2),

ṽ(x)= v(x)∓ 1
2(−w(x)+ u(x)(x2+ (w−1− u1)x

+ u2
1+ w0 − u2− u1w−1))t +O(t2),

w̃(x)=w(x)± v(x)(x2+ (w−1− u1)x + u2
1+ w0 − u2− u1w−1)t +O(t2).

Moreover we can construct the analogs of Mumford’s vector fieldsXa . We proceed as in
Section 2.4, but special care has to be taken because now the curve has two points at infinity,
namely∞f and the point that corresponds to∞f under the hyperelliptic involution; the
latter point will be denoted by∞′

f . Fixing a sectionξ , we writeξ(f ) = (af , bf ) and we do
a translation over [(af ,−bf )−∞f ]. The matrix going with this transformations is denoted
by P(x). Then we translate over [(λf (t), µf (t)) −∞′

f ]; its matrix is denoted byQt(x).
The product then corresponds to a translation over [(λf (t), µf (t))− (af , bf )]. Explicitly,
for P(x) we take the lower signs in(47) to get

P(x) =
(
x − a + u1− ũ1+ β β(ũ1− u1− β)− (x − a)(x + a + w−1− ũ1)

−1 x − a + β

)

with

ũ1 = af + u2− 2v1− w0 − 2u1(af − β)+ (af − β)2
u1− w−1− 2af + 2β

,

β = bf + v(af )
u(af )

= w(af )

bf − v(af ) .

ForQt(x) we take the upper sign and we find

Qt(x) =
(
x − λf (t)+ ũ1− ũt1+ β(t) �

1 x − λf (t)+ β(t)

)
,
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where� = β(t)(ũ1− ũt1+ β(t))+ (x − λf (t))(x + λf (t)+ w̃−1− ũt1) and

˜̃u1= λf (t)+ ũ2+ 2ṽ1− w̃0 + 2ũ1(β(t)− λf (t))+ (β(t)+ λf (t))2
ũ1− w̃−1− 2λf (t)+ 2β(t)

,

β(t)= µf (t)− ṽ(λf (t))
ũ(λf (t))

.

In order to express̃̃u1 in terms of the original phase variables, as needed in the computation,
one needs explicit formulas for̃u2, ṽ1, w̃−1 andw̃0. For ũ2 andṽ1 we find by expanding
the first Bäcklund transformation in terms powers oft

ũ2= aũ1+ u3− 2(a − β)u2+ (a − β)2u1− 2v2+ 2(a − β)v1− w1

u1− w−1− 2af + 2β
,

ṽ1=−v1+ u2− (a − β)u1− ũ2+ ũ1(a − u1+ ũ1− β).
We find as in the case of the Mumford system thatβ(0) = u1− ũ1+ β and that

β ′(0) = 1− (u1− w−1− 2a + 2β)
u(a)

2b
.

As we have seen in the Mumford case the vector field which corresponds to the deformation
family is given by

dL

dtaf
(x) = [Q′0(x)Q

−1
0 (x), L(x)],

which leads by direct substitution to

dL

dtaf
(x) = 1

2bf

[
L(af )

x − af +
(

0 u(af )(x + af + u1− w−1)

0 0

)
, L(x)

]
.

As far as we could check these vector fields are new.

3.2. Generalized Jacobians (odd case)

We now consider a first case in which the fibers of the moment map are affine parts of
generalized (hyperelliptic) Jacobians. The main difference between the generalized Jacobian
case and the usual case is that generalized Jacobians have a larger symmetry group, leading
to more general Bäcklund transformations.

We first define phase space, which is denoted byM̂g, a moment map̂χ : M̂g → P2g+1,
we construct a natural mapπ : M̂g → Mg onto the phase space of the Mumford system,
and we give a geometric description of the fibers ofχ . For anyg ≥ 1, M̂g is the space of
all Lax matrices of the form

L(x) =
(
V (x) W(x)

U(x) −V (x)

)
,
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where the entries ofL(x) are now subject to the following constraints:U(x) andW(x)
are monic and their degrees are respectivelyg andg + 1; the degree ofV (x) is at mostg.
Writing

U(x)= xg + U1x
g−1+ · · · + Ug, V (x) = V0x

g + · · · + Vg,
W(x)= xg+1+W0x

g + · · · +Wg,

we take the coefficients of these three polynomials as coordinates onM̂g. It is clear that the
group of matrices of the form

Nτ =
(

1 −τ
0 1

)
(48)

acts onM̂g by the adjoint action, whereτ is any function onM̂g. In particular, takingτ = V0
we get a map onto a subspace which is exactly the phase spaceMg of the Mumford system;
we denote this natural map byπ and denote the compositionχ ◦π by χ̂ ; explicitly χ̂ is given
byL(x) �→ −detL(x). Forf ∈ P2g+1 such thatΓf is smooth the fiberχ−1(f ) is an affine
part of Symg+1 Γ̄f , the(g+1)th symmetric product of̄Γf (recall thatΓ̄f has genusg). To

see this, one associates to(U(x), V (x),W(x)) ∈ χ−1(f ) the divisorD = ∑g+1
i=1 (xi, yi),

wherexi are the roots ofW(x) andyi = −V (xi). It is easy to show that this realizes a
bijection betweenχ−1(f ) and an affine part of Symg+1(Γ̄f ).7 The rational function

y − V (x)
W(x)

= U(x)

y + V (x)
shows thatD is linearly equivalent to the divisorD′ +∞f =

∑g

i=1(x
′
i , y

′
i )+∞f , wherex′i

are the zeros ofU(x) andV (x′i ) = y′i for i = 1, . . . , g. This gives a geometric interpretation

of the mapπ , and it shows that, under the above correspondence between points ofM̂g and
divisors, the adjoint action byNτ maps divisors to linearly equivalent divisors.

We will show that this geometric picture leads, via our geometric construction of Bäcklund
transformations, to a family of Bäcklund transformationsBξ,α : M̂g → M̂g which makes
the following diagram commutative:

(49)

It should be clear that, since we are forced to work with divisors, we cannot write(5) as a
definitionfor Bξ,α because the effective divisor of degreeg + 1 that corresponds to a line
bundle of degreeg + 1 is not unique. Accordingly we write down a general formula for a
map satisfying(5) and then we specialize the arbitrary function that figures in it so as to

7 From this description it follows easily that the fiberχ−1(f ) can also be described as an affine part of the
generalized Jacobian ofΓf with respect to the divisor 2∞f (see[20]).
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obtain a Bäcklund transformation. Explicitly, we letξ(f ) = (λf , µf , f ), as before, and
we consider for a generic point(U(x), V (x),W(x)) ∈ M̂g the following function:

F(x, y) = (y − V (x))(x − λf + αβ)+ αW(x)
W(x)(x − λf ) .

We have chosen a combination of the parametersα andβ such that, when we express that
the numerator ofF vanishes at(λf ,−µf ), then we find

β = W(λf )

µf + V (λf ) =
µf − V (λf )
U(λf )

,

so thatβ is formally given by the same formula(9) as in the Mumford system. With this
choice ofβwe find for anyα thatF(x, y)hasD+(λf , µf ) =

∑g+1
i=1 (xi, yi)+(λf , µf )as its

polar divisor and vanishes at infinity. It follows that the other zeros ofF(x, y) give a divisor
D̃ which is linearly equivalent to the divisorD which is associated to(U(x), V (x),W(x)),
up to a shift over(λf , µf )−∞f . Multiplying F(x, y)by(y+V (x))(x−λf+αβ)−αW(x)
and usingy2 = U(x)W(x)+V 2(x)we find an equation for thex-coordinates of the image
divisor and we deduce, as in the case of the Mumford system,

W̃ (x) = − (x − λf + αβ)
2U(x)+ 2α(x − λf + αβ)V (x)− α2W(x)

λf − x . (50)

By interpolation at the zeros of̃W we also find

Ṽ (x) = β(x − λf + αβ)U(x)+ (x − λf + 2αβ)V (x)− αW(x)
λf − x , (51)

and the formula forŨ (x) follows from Ũ (x)W̃ (x)+ Ṽ 2(x) = U(x)W(x)+ V 2(x),

Ũ (x) = β
2U(x)+ 2βV (x)−W(x)

λf − x . (52)

This gives explicit formulas for the mapBξ,α. In terms of matrices,Bξ,α is given byL �→
MLM−1, whereM can be taken as follows:

M(x) =
(
α x − λf + αβ
1 β

)
. (53)

The commutativity of(49) is a direct consequence of the equalityN−V0+α−βM = M̄NV0,
whereM̄ is given by

M̄(x) =
(
β + V0 x − λf + (β + V0)

2

1 β + V0

)
.

If we compare(14) and (53)then we see that both matrices coincide whenα = β, but, as
we will see, the choiceα = β does not lead to a Bäcklund transformation (whenα = β it
is not a Poisson map).
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We now come to Poissonicity of the maps that we have constructed. The Poisson structure
of the generalized Mumford system is given, in the notation ofSection 2.2, by

{L(x) L(y)} = [r(x − y), L1(x)ϕ(y)+ ϕ(x)L2(y)], (54)

whereϕ(x) is a polynomial of at most degreeg. We takeλf to be dependent on the Casimirs
only and we compute, as before, the brackets withβ, giving

{U(x), β}ϕ = µf ϕ(x)− ϕ(λf )(V (x)+ βU(x))
µf (x − λf ) ,

{V (x), β}ϕ =−2µf βϕ(x)− ϕ(λf )(β2U(x)+W(x))
2µf (x − λf ) ,

{W(x), β}ϕ =−β βµf ϕ(x)+ ϕ(λf )(βV (x)−W(x))
µf (x − λf ) . (55)

Using these formulas we can determine for which choices ofα (which could, a priori, be
any function on phase space) the map(U(x), V (x),W(x)) → (Ũ(x), Ṽ (x), W̃ (x)) is a
Poisson map. A (quite long) computation leads to the following conditions onα:

{α,U(x)} =−CV (x)+ βU(x)
x − λf , {α, V (x)} = −CW(x)+ β

2U(x)

2(x − λf ) +D,

{α,W(x)} =CβW(x)− βV (x)
x − λf + ϕ(x), {α, β} = ϕ(λf )

(2µf )
.

In these formulasC andD are any functions on phase space. However, since the left-hand
side of the first three expressions is polynomial inx, the same must be true for the right-hand
side, which implies thatC = 0. Using the last equation and the definition ofβ we find that
D = 0 and we are left with

{α,U(x)} = {α, V (x)} = 0, {α,W(x)} = ϕ(x), {α, β} = ϕ(λf )
2µf

. (56)

It turns out that there is such anα, namelyα = V0; to obtain the most general solution
it suffices to add any Casimir ofϕ to V0. A direct check that one gets for those values of
α indeed a Poisson map can be done quite easily by using the following formulas, which
follow from (54)–(56):

{L(x) M(y)} =
(
ϕ(λf )

2µf
[L(x),N(x)] + ϕ(x)N(x)

)
⊗ ∂M
∂β

− ϕ(x) ∂
2M

∂α∂β
⊗ ∂M
∂α
,

{M(x) L(y)} =−∂M
∂β
⊗
(
ϕ(λf )

2µf
[L(y),N(y)]+ϕ(y)N(y)

)
+ϕ(y)∂M

∂α
⊗ ∂

2M

∂α∂β
,

{M(x) M(y)} =−ϕ(λf )
2µf




0 α −α 0

0 1 0 β

0 0 −1 −β
0 0 0 0


 ,
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where

N(x) = 1/λf − x

 β β2

−1 −β


 .

In conclusion we have shown that whenλf andα − V0 depend only on the Casimirs then
the mapBξ,α is a Bäcklund transformation for the generalized Mumford system.

In order to check spectrality of the mapBξ,α whenλf andα − V0 depend only on the
Casimirs one proceeds as in the case of the Mumford system. We fix a monic polynomial
ϕ(x) of degreeg with distinct rootsa1, . . . , ag and we define an affine map̂Mg → C3g+2

by

(
U(x)

ϕ(x)
,
V (x)

ϕ(x)
,
W(x)

ϕ(x)

)

=
(

1+
g∑
i=1

fi

x − ai , h0 +
g∑
i=1

hi

x − ai , x + f0 +
g∑
i=1

ei

x − ai

)
. (57)

In this case we get the brackets(33)with addition one non-trivial bracket,{h0, f0} = 1. We
denote the Casimir element coming from theith copy ofsl(2) by Ci , Ci = h2

i + eifi and
we denote the Casimirα − V0 byC. We fix a symplectic leaf and we express the variables
f0, . . . , fg, f̃0, . . . , f̃g in terms ofh0, . . . , hg, h̃0, . . . , h̃g andλ. To do this, first notice that

α = h0 + C and β = C − h̃0,

as follows easily from(51) and (57). The formulas for the variablesf1, . . . , fg follow from

(βfi + hi)2− fif̃i(λ− ai)− Ci = 0, (58)

h̃i + hi − αf̃i + βfi = 0, (59)

which one derives fromEqs. (50)–(52)for Bξ , expressed in terms of the variablesfi
andhi . Indeed, if we use the second equation to eliminatef̃i from the first equation we
get

f 2
i h̃0(ai − λ− h0h̃0)+ fi((λ− ai)(h̃i + hi)+ 2hih0h̃0)+ h0(Ci − h2

i ) = 0, (60)

and this definesf1, . . . , fg as a function of the variableshj andh̃j ; the second equation
in (58) then definesf̃1, . . . , f̃g as a function of these variables. As forf0 andf̃0, they are
given by

f0 = −λ+
g∑
i=1

f̃i + h̃2
0 − 2h0h̃0, f̃0 = −λ+

g∑
i=1

fi + h2
0 − 2h0h̃0,
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as follows also from(50)–(52). Using these formulas it is straightforward to verify the
following integrability conditions (i, j = 1, . . . , g):

∂fi

∂λ
=−fi ∂µ̂

∂hi
= − αfif̃i

(λ− ai)(βfi + αf̃i)− 2αβ(hi + βfi)
,

∂f̃i

∂λ
= f̃i ∂µ̂

∂hi
= − βfif̃i

(λ− ai)(βfi + αf̃i)− 2αβ(hi + βfi)
,

∂f0

∂λ
=− ∂µ̂

∂h0
= −1− β

g∑
i=1

fif̃i

(λ− ai)(βfi + αf̃i)− 2αβ(hi + βfi)
,

∂f̃0

∂λ
= ∂µ̂

∂h̃0
= −1− α

g∑
i=1

fif̃i

(λ− ai)(βfi + αf̃i)− 2αβ(hi + βfi)
.

This shows that the mapsBξ have the spectrality property. In the same way one can verify
the compatibility conditions

fj
∂fi

∂hj
= fi ∂fj

∂hi
, f̃j

∂f̃i

∂h̃j
= f̃i ∂f̃j

∂h̃i
, fj

∂f̃i

∂hj
= −f̃i ∂fj

∂h̃i
,

giving an alternative proof that the mapsBξ are Poisson maps.
We now show that these Bäcklund transformation discretize the underlying integrable

system. The computation is similar as in the previous cases, except that one has to choose
the Casimirα−V0 carefully so as to obtain the identity transformation in the limitλf →∞.
Since the point at infinity of the curve is a Weierstraß point we letλ = t−2 and we choose
α = V0 + 1/t . Then

β = 1

t
− V0 + 1

2
(W0 − U1+ V 2

0 )t +O(t2),

and we find by direct substitution

Ũ (x)=U(x)+ 2t (V (x)− V0U(x))+O(t2),

Ṽ (x)= V (x)+ t (U(x)1
2(2x +W0 − U1− V 2

0 )−W(x))+O(t2),

W̃ (x)=W(x)− t (V (x)(2x +W0 − U1− V 2
0 )− 2V0W(x))+O(t2),

from which we can read off the vector field. For the vector fieldsXa the computation is
very similar to the one in the case of the Mumford system. Namely we take

P(x) =
(
α x − af − αβ
1 −β

)

with α = V0 andβ = (bf + v(af ))/u(af ); moreover we take

Qt(x) =
(
α(t) x − λf (t)+ αβ(t)

1 β(t)

)
,
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whereα(t) = Ṽ0 = β (so that in factα is independent oft) and β(t) = (µf (t) −
Ṽ (λf (t)))/Ũ(λf (t)), so thatβ(0) = −α. Usingβ ′(0) = U(a)/(2bf ) we find

Q′0(x)Q
−1
0 (x) =

1

2bf (x − a)

(
V (a)− bf W(a)

U(a) −V (a)

)
,

so that, after removal of a diagonal matrix, we find the following Lax equation:

dL

dtaf
(x) = 1

2bf

[
L(af )

x − af , L(x)
]
.

We shortly indicate how the above mapsBξ,α can also be found from the eigenvectors of
the Lax operator. Taking�α0 = (1,0) and�α = (γ, δ − x) we express that the solutions to

( 1 0)

(−ṽ(x)− y −w̃(x)
−ũ(x) ṽ(x)− y

)
= 0, (61)

are the same as the solutions of

( γ δ − x )
(−v(x)− y −w(x)

−u(x) v(x)− y

)
= 0, (62)

except that(62)also has(λf ,−µf ) as a solution. By eliminatingy from (62)we find that

W̃ (x) = (x − δ)
2U(x)− 2(x − δ)γ V (x)− γ 2W(x)

x − λf ,

because the numerator of the above right-hand side is monic of degreeg + 2 and van-
ishes at the roots ofW as well as atx = λf . By interpolation at the zeros of̃W we find
that

Ṽ (x) = (x − δ)(δ − λf )U(x)+ (2δ − λf − x)γV (x)+ γ
2W(x)

γ (x − λf ) .

We recover our formulas(50) and (51)(hence also(52)) by takingγ = α andδ = λ− αβ.

3.3. Generalized Jacobians (even case)

In this case phase spacêMg is given by the space of triples of polynomials(U(x), V (x),
W(x)) with the following degree constraints:

U(x)= xg+1+ U0x
g + · · · + Ug, V (x) = V0x

g + · · · + Vg,
W(x)= xg+1+W0x

g + · · · +Wg.
In this case the spectral curve is of the formy2 = f (x), wheref (x) = U(x)W(x)+V 2(x)

is monic of degree 2g + 2. Whenf is irreducible the corresponding fiber of the moment
map χ̂ (which is given as in the other cases byχ̂(L(x)) = −detL(x)) is an affine part
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of Symg+1 Γ̄f ; this is shown by associating to(U(x), V (x),W(x)) ∈ χ−1(f ) the divisor

D =∑g+1
i=1 (xi, yi), wherexi are the roots ofU(x) andyi = V (xi). We choose a sectionξ

and we letξ(f ) = (λf , µf , f ). For a generic point(U(x), V (x),W(x)) ∈ M̂g we consider
the function

F(x, y) = (y + V (x))(x − α1)± U(x)(x − α2)

U(x)(x − λf ) ,

whereα1 andα2 satisfy the following linear equation (zero of the numerator ofF at the
point (λf ,−µf )):

(−µf + V (λf ))(λf − α1)± U(λf )(λf − α2) = 0.

F (x, y) hasD + (λf , µf ) =
∑g+1
i=1 (xi, yi) + (λf , µf ) as its polar divisor and vanishes

at infinity. It follows that the other zeros ofF(x, y) give a divisorD̃ which is linearly
equivalent to the divisorD which is associated to(U(x), V (x),W(x)), up to a shift over
(λf , µf )−∞f . It leads to the following formulas for the mapBξ :

Ũ (x)= U(x)(x − α2)
2± 2V (x)(x − α1)(x − α2)−W(x)(x − α1)

2

C(x − λf ) ,

Ṽ (x)= 1

C(x − λf ) [±(x − α2)(x − α4)U(x)+ ((x − α2)(x − α3)

+ (x − α1)(x − α4))V (x)∓ (x − α1)(x − α3)W(x)],

W̃ (x)= −U(x)(x − α4)
2∓ 2V (x)(x − α3)(x − α4)+W(x)(x − α3)

2

C(x − λf ) ,

where

C = 2(α1− α2)+ U0 ± 2V0 −W0, (63)

and

α3 = α1− Cα1− λf
α1− α2

, α4 = α2− C α2− λf
α1− α2

. (64)

The above transformation can be rewritten in the form of the matrix equationM(x)L(x) =
L̃(x)M(x) with the following matrixM:

M(x) =
(

x − α3 ±(x − α4)

±(x − α1) x − α2

)
, (65)

where the variablesα1, . . . , α4 are given by

αi = λf + (εiC − U0 ∓ 2V0 +W0)((−1)i−1C − Ũ0 ± 2Ṽ0 + W̃0)

4C
, (66)

whereεi = 1 for i = 1,2 andεi = −1 otherwise.
Let us now turn to Poissonicity and spectrality. For every polynomialϕ of degree at most

g + 1 we find a Poisson structure{·, ·}ϕ which is given formally by precisely the same
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formulas as in the case considered inSection 3.2. We can see from the above formulas that
it will be much easier to do further calculations if we make a simple similarity transform:

M(x) �→ SM(x)S−1, L(x) �→ SL(x)S−1, (67)

where

S =
(

1 ±1

1 ∓1

)
. (68)

Let us denote the transformed matricesL(x) andM(x) by small lettersE(x) andm(x),
respectively,

E(x) = SL(x)S−1, Ẽ(x) = SL̃(x)S−1, m(x) = SM(x)S−1,

and correspondingly,

E(x) =
(
v(x) w(x)

u(x) −v(x)

)
, Ẽ(x) =

(
ṽ(x) w̃(x)

ũ(x) −ṽ(x)

)
.

The triple of new polynomials is as follows:

u(x)= u0x
g + · · · + ug, v(x) = ± xg+1+ v0x

g + · · · + vg,
w(x)=w0x

g + · · · + wg,

and the matrixm(x) has the following form:

m(x) = 1

2C

(
4(C(x − λ)+ w0ũ0) ±2Cw0

±2Cũ0 C2

)
.

Note that the determinant of the matrixm(x), as well as of the matrixM(x), is expressed
in terms ofC:

detM(x) = detm(x) = C(x − λ).

Suppose now that the polynomialϕ(x) is monic and has distinct rootsa0, . . . , ag and
consider the map defined by

1

ϕ(x)
(u(x), v(x), w(x)) =

(
g∑
i=0

fi

x − ai ,±1+
g∑
i=0

hi

x − ai ,
g∑
i=0

ei

x − ai

)
.

It is an isomorphism between̂Mg, equipped with the Poisson structure{·, ·}ϕ , and the direct
sum ofg + 1 copies of the Lie–Poisson algebra ofsl(2). Notice thatu0 =

∑g

i=0 fi and
w0 =

∑g

i=0 ei, so thatm(x) depends only on variablesei andf̃i . Therefore we take(ei, f̃i),
i = 0, . . . , g, as independent variables. Then, it is easy to find the following formulas for
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the variables(hj , h̃j ), j = 0, . . . , g:

C2h2
j ∓ 4Cũ0ejhj + 4ej (C(aj − λ)f̃j + ũ2

0ej )− C2Cj = 0,

C2h̃2
j ∓ 4Cw0f̃j h̃j + 4f̃j (C(aj − λ)ej + w2

0f̃j )− C2Cj = 0,

C(hj − h̃j ) = ±2(ũ0ej − w0f̃j ). (69)

As for the compatibility conditions:

ek
∂hj

∂ek
= ej ∂hk

∂ej
, f̃k

∂h̃j

∂f̃k
= f̃j ∂h̃k

∂f̃j
, f̃k

∂hj

∂f̃k
= ej ∂h̃k

∂ej
,

we have from(69) that

∂hj

∂ek
= ∂h̃j
∂f̃k

= 0, j �= k,

which leads at once to the first two equations and to the third equation forj �= k. The proof
of the third equation fori = k is easy by direct computation. The spectrality property also
holds, as one easily verifies the following formulas:

ej
∂µ̂

∂ej
= −∂hj

∂λ
, f̃j

∂µ̂

∂f̃j
= −∂h̃j

∂λ
,

whereµ̂ = µ/ϕ(λ).
We finish by computing the continuum flows, obtained by taking the limitt → 0 of the

family of sectionsξt given byλ = 1/t andµ = ∓(1+ (U0 +W0)t/2+ O(t2))/tg+1. In
order for the limit to exist we must take the CasimirC of the formC′ − 4λ, whereC′ does
not depend onλ. Then

a1 = C
′ − 2U0 + 2(±1− 1)V0 + 2W0

4
, a2 = 2

t
− C

′ − 2(1± 1)V0

4
,

and in the limit our Bäcklund transformations lead, as in the other cases, to a vector field
which has the Lax formL′(x) = [L(x),N(x)], whereN(x) is given (up to a constant factor
1/8) by(

(2± 2)V0 ±(4x−C′−2U0 − (2∓ 2)V0 + 2W0)

±(4x − C′ + 2U0 + (2∓ 2)V0 − 2W0) −(2± 2)V0

)
.

In terms ofl(x) this becomesl′(x) = [l(x), n(x)], wheren(x) = VN(x)V −1 is given by

n(x) = ±1

8

(
4x − C′ 4w0

4u0 C′ − 4x

)
.

The above vector fields is the analog of the vector fieldX∞ of the Mumford system. The
analogs of the vector fieldsXa, a ∈ P1 are constructed in the same way as in the other
cases.



V. Kuznetsov, P. Vanhaecke / Journal of Geometry and Physics 44 (2002) 1–40 35

3.4. Geodesic flow on SO(4)

We now look at the case of an integrable geodesic flow on SO(4), whose underlying
metric appears as metric II in the classification of integrable geodesic flows on SO(4). In
suitable coordinates, the basic vector fieldX1 of this a.c.i. system is given by the differential
equations

ż1 = 2z5z6, ż2 = 2z3z4, ż3 = z5(z1+ z4),
ż4 = 2z2z3, ż5 = z3(z1+ z4), ż6 = 2z1z5,

and it admits the following quadratic first integrals:

H1= z23 − z25, H2 = z21 − z26, H3 = z22 − z24,
H4= (z1+ z4)2+ 4(z23 − z2z5− z3z6). (70)

Following [5] we let

u(x) = x2+
(
z1+ z2+ z4+ z6

2(z3− z5) − 1

)
x − z2+ z4

2(z3− z5) ,

and we letv(x) be the polynomial of degree at most 1, characterized by

v(0) = u(0)(z1+ z4+ 2z3), v(1) = u(1)(z1+ z4+ 2z5).

This map associates to any pointP in C6 an unordered pair of points on the algebraic curve

Γ : y2 = f (x) = x(1− x)[4x3h1− (4h1+ h4)x
2+ (h4− h3− h2)x + h3], (71)

wherehi denotes the value ofHi atP . Notice that the polynomialf which definesΓ is not
monic, its leading term being dependent on the integrals. As a consequence, the polynomial
w, defined byw(x) = f (x)− v2(x)/u(x), will not be monic and the map doesnotdefine a
map to the Mumford system (indeed, for most of the Poisson structures of this system this
leading term is not even a Casimir). For future use, notice thatw(0) = −u(0)(z1+z4+2z3)2

andw(1) = −u(1)(z1 + z4 + 2z5)2, becausef has 0 and 1 as roots. Conversely, given
three such polynomialsu, v,w which satisfyv2(x)+ u(x)w(x) = f (x), wheref has the
above form(71), the corresponding point(z1, . . . , z6) ∈ C6 is reconstructed by using the
following formulas:

z3− z5= 1

2

(
v(0)

u(0)
− v(1)
u(1)

)
, z2+ z4 =

(
v(1)

u(1)
− v(0)
u(0)

)
u(0),

z1+ z6=
(
v(0)

u(0)
− v(1)
u(1)

)
u(1), (72)

in addition to the first three equations in(70).
In order to construct Bäcklund transformations for this system we consider, for a fixed

pointP ∈ C6, the following rational function:

F(x, y) = y + v(x)+ βu(x)
u(x)(x − λf ) , (73)
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and we demand that the numerator ofF vanishes at the point(λf ,−µf ), as in the case of
the Mumford system. It leads to

ũ(x)= β
2u(x)+ 2βv(x)− w(x)

−4h1(λf − x) ,

ṽ(x)= (β
3− 4h1β(x − λf ))u(x)+ (2β2− 4h1(x − λf ))v(x)− βw(x)

4h1(x − λf ) , (74)

the value ofw̃(x) is not needed for the computation. Writing(72)in terms of tilded variables
and substituting(74) in it we find

z̃3− z̃5
z3− z5 = 2(z3+ z5)

(
λf

z1+ z4+ 2z3+ β −
λf − 1

z1+ z4+ 2z5+ β
)
,

z̃2+ z̃4
z2+ z4 =−

1

4

z̃3− z̃5
z3− z5

(z1+ z4+ 2z3+ β)2
h1λf

,

z̃1+ z̃6
z1+ z6 =−

1

4

z̃3− z̃5
z3− z5

(z1+ z4+ 2z5+ β)2
h1(λf − 1)

.

Since the map preserves the Hamiltonians the above three expressions are (in that order)
also equal to

z3+ z5
z̃3+ z̃5 ,

z2− z4
z̃2− z̃4 ,

z1− z6
z̃1− z̃6 ,

so that the above equations can be solved linearly in terms of the variablesz̃i . The Poisson
matrix of a Poisson structure for this system is given by



0 z6 −z5 0 −z3 z2− 2z5
−z6 0 0 z6− 2z3 0 −z1− z4
z5 0 0 −z5 0 0

0 2z3− z6 z5 0 z3 −z2
z3 0 0 −z3 0 0

2z5− z2 z1+ z4 0 z2 0 0



.

If λ depends on the Casimirs of this Poisson structure only, then the above map is a Poisson
map, so it is a Bäcklund transformation; moreover it has the spectrality property. This can be
verified directly by computing the brackets{z̃i , z̃j }and verifying the compatibility relations.
Alternatively one uses the fact that the map which is induced on the triples of polynomials
(u(x), v(x), w(x)), as above, is a Bäcklund transformation for an a.c.i. system obtained
by removing in the Mumford system the restriction that the polynomialw be monic (the
Poisson structures are obtained from(16) by replacingσ ⊗ σ with w̄ − σ ⊗ σ , wherew̄
denotes the leading coefficient ofw(x)). It suffices then to verify that the map which sends
(z1, . . . , z6) to (u(x), v(x), w(x)) is a Poisson map and has the spectrality property when
one takes on the target space the Poisson structure corresponding toϕ(x) = x(x − 1).
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3.5. The Hénon–Heiles potential

In this section we show an example how one gets Bäcklund transformations for a.c.i.
systems whose generic level set of the integrals is a finite cover of a Jacobian. We do this
by lifting the Bäcklund transformation for the underlying family of Jacobians to the cover;
since such a lifting is not unique we get, in general, an implicitly defined correspondence,
rather than an explicit map.

We treat the case of the Hénon–Heiles system, which is given by the following Hamilto-
nian onC4, equipped with the standard symplectic structure,

H = 1
2(p

2
1 + p2

2)+ 8q3
2 + 4q2

1q2.

A first integral is given by

F = −q2p
2
1 + q1p1p2+ q2

1(q
2
1 + 4q2

2).

We use the map defined by

u(x)= x2− 2q2x − q2
1, v(x) = i√

2
(p2x + q1p1),

w(x)= x3+ 2q2x
2+ (q2

1 + 4q2
2)x −

p2
1

2
, (75)

which is a morphism to the Mumford system, the latter being equipped with the Poisson
structure corresponding toϕ(x) = x. It follows from the results ofSection 2that for any
constantλ ∈ C we get a Bäcklund transformation, given byL̃ = MLM−1, where

L(x) =




i√
2
(p2x + q1p1) x3+ 2q2x

2+ (q2
1 + 4q2

2)x −
p2

1

2

x2− 2q2x − q2
1 − i√

2
(p2x + q1p1)


 ,

and

M(x) =
(
β x − λf + β2

1 β,

)
,

where

β =
√

2µf − i(p2λf + q1p1)√
2(λ2− 2q2λ− q2

1)
.

Alsoµ2
f = f (λf ) with

f (x) = u(x)w(x)+ v2(x) = x(x4− hx− g),
whereh andg are the values ofH andG at the point(q1, q2, p1, p2). Poissonicity and
spectrality are a consequence of the fact that the map(q1, q2, p1, p2) → (u, v,w), given
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by (75) is a Poisson map. One notices that in this case one does not get explicit formulas
for q̃1, q̃2, p̃1, p̃2 but for q̃2

1, q̃2, q̃1p1, p̃2, which stems from the fact that the generic level
manifolds of the integrals are 2:1 unramified covers of Jacobians.

4. Concluding remarks

We have constructed Bäcklund transformations for a large class of integrable systems.
Basically, we have considered four large families of integrable systems that are of interest in
mathematical physics. Indeed, if we choose the following parameterization of the generators
(hj , ej , fj ) of a direct sum ofg or g + 1 copies of the Lie–Poisson algebra ofsl(2),
in terms of the canonical Darboux variables (coordinates and momenta),(pj , qj ), {pj ,
qk} = δjk:

hj = 1

2
pjqj , fj = 1

2
q2
j , ej = −1

2
p2
j +

2Cj
q2
j

,

then we deal with the following Hamiltonian systems:

(1) In the case of the Mumford system the Hamiltonian is of the form

H = 1

2

g∑
i=1

p2
i −

g∑
i=1

2Ci
q2
i

− 1

2

g∑
i=1

q2
i (ai + C0)+ 1

4

(
g∑
k=1

q2
k

)2

,

so this case is a generalization of theg-dimensional Garnier system.
(2) For the even Mumford system the Hamiltonian function describes the motion of a

particle in a potential of order 6:

H = 1

2

g∑
i=1

p2
i −

g∑
i=1

2Ci
q2
i

− 1

2

g∑
i=1

(a2
i + aiC−1+ C0)q

2
i

+ 1

4

(
g∑
k=1

q2
k

)
g∑
i=1

(C−1+ 2ai)q
2
i −

1

8

(
g∑
k=1

q2
k

)3

.

(3) In the odd generalized case we have an integrable system with linear potential

H = 1

2

g∑
i=0

p2
i −

g∑
i=1

2Ci
q2
i

+ 1

2
q0.

(4) In the even generalized case we have ag-dimensional harmonic oscillator

H = 1

2

g∑
i=0

p2
i −

g∑
i=0

2Ci
q2
i

− 1

2

g∑
i=0

q2
i .

In other words we have showed how to construct in a systematic way Bäcklund trans-
formations for integrable systems linearizable on hyperelliptic Jacobians or generalized
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hyperelliptic Jacobians. Since for many classical integrable systems it is known how
to embed them into Mumford systems[21], our construction produces many new
integrable discretizations of Liouville integrable systems, such as the Kowalevski,
Goryachev–Chaplygin and Euler tops, Toda lattices and the Gaudin magnet.

For further reading see[6,13].
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